Potential Alternative Inhibitors of Alpha-Synuclein and Effective Treatment of Parkinson’s Disease

Authors

  • Sani Y. Najib Department of Pharmaceutical and Medicinal Chemistry, Bayero University Kano, PMB 3011, Kano Nigeria
  • Yusuf O. Ayipo Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, PMB 1530, Ilorin, Nigeria
  • Damodaran Thenmoly Centre for Drug Research, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia
  • Mohd N. Mordi Centre for Drug Research, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia

Keywords:

Neurodegeneration, Parkinson’s disease, α-synuclein, Neuropharmacology, Oligomers, Therapeutic design

Abstract

Parkinson’s disease (PD) is the second common prevalent progressive neurodegenerative disorder mainly affecting the elderly. The disease gradually exhibits symptoms from resting tremor, bradykinesia, rigidity, and postural instability. Misfolding and aggregation of alpha-synuclein is considered the main pathological hallmark of the disease. Currently, treatment options for PD are only symptom-targeted, while an effective therapeutic strategy remains a challenge. Therefore, this study aims to comprehensively review α-synuclein, its implications and unique structural features as an effective therapeutic target for PD treatment. The earmarked structural modifications of the protein target in the pathogenesis of the disease include aggregation, propagation, and misfolding, while inhibitions of formation and propagation of monomers, oligomers and fibrils are essentially implicated as pharmacological pathways. Through experimental studies such as enzyme-linked immunosorbent assay (ELISA), Luminex, and thioflavin T (ThT) assay, potent inhibitors such as myricetin, curcumin, crocin, nanobodies including VH14*PEST, and NbSyn87*PES are notably identified as therapeutic alternatives and can be subjected to computational study and derivatized to obtained new molecules that could be of therapeutic value. The review highlights important critical implications of α-synuclein in the pathogenesis of PD and some therapeutic potentials against PD that is amenable for further translational study.

Author Biographies

Sani Y. Najib, Department of Pharmaceutical and Medicinal Chemistry, Bayero University Kano, PMB 3011, Kano Nigeria

Centre for Drug Research, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia

Yusuf O. Ayipo, Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, PMB 1530, Ilorin, Nigeria

Centre for Drug Research, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia

 

References

Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW, Lashuel HA. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci. 2020; 117(9):4971-

Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Front Pharmacol. 2020; 11:356.

Tibar H, El Bayad K, Bouhouche A, Ait Ben Haddou EH, Benomar A, Yahyaoui M, Benazzouz A and Regragui W. Non-Motor Symptoms of Parkinson's Disease and Their Impact on Quality of Life in a Cohort of Moroccan Patients. Front Neurol. 2018; 9:170.

Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother. 2019; 111:1277-1289.

Verger A, Horowitz T, Chawki MB, Eusebio A, Bordonne M, Azulay J-P, Girard N, Guedj E. From metabolic connectivity to molecular connectivity: application to dopaminergic pathways. Eur J Nucl Med Mol Imaging. 2020; 47(2):413-424.

Yan C, Liu Q, Bi Y. Bifurcation analyses and potential landscapes of a cortex-basal ganglia-thalamus model. IET Syst Biol. 2021; 15(3):101-109.

Hsieh CJ, Xu K, Lee I, Graham TJA, Tu Z, Dhavale D, Kotzbauer P, Robert H. Chalcones and Five-Membered Heterocyclic Isosteres Bind to Alpha Synuclein Fibrils in Vitro. ACS Omega. 2018; 3(4):4486-4493.

Xu Y, Zhang Y, Quan Z, Wong W, Guo J, Zhang R, Yang Q, Dai R, McGeer PL, Qing H. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease. Neurochem Res. 2016; 41(10):2788-2796.

Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, Polverino de Laureto P. Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. Int J Mol Sci. 2021; 22(11):6008.

Stoker TB and Greenland JC. Parkinson’s disease: pathogenesis and clinical aspects [https//pubmed.ncbi.nlm.nih.gov./30702835]. 2018.

(Accessed February, 2022)

Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson's disease. Expert Opin Investig Drugs. 2016; 25(11):1281-1294.

Makwana PK and Sundd M. Alpha-synuclein structure, aggregation and modulators. J Prot Proteom. 2016; 7(2):22

Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? J Parkinsons Dis. 2016; 6(1):39-51.

Burré J, Sharma M, Südhof TC. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harb Perspect Med. 2018; 8(3):a24091.

Jain MK, Singh P, Roy S, Bhat R. Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins. Biochem. 2018; 57(26):3830-3848.

Schweighauser M, Arseni D, Bacioglu M, Huang M, Lövestam S, Shi Y, Yang Y, Zhang W, Kotecha A, Garringer HJ, Vidal R. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature. 2022; 605(7909): 310-314.

Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, Freire J, Yazdi AA, Fleming S, Dobson CM, Kumita JR. Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice. J Biol Chem. 2019; 294(27):10392-10406.

Alam P, Bousset L, Melki R, Otzen DE. α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem. 2019; 150(5):522-534.

Glajch KE, Moors TE, Chen Y, Bechade PA, Nam AY, Rajsombath MM, McCaffery TD, Dettmer U, Weihofen A, Hirst WD, Selkoe DJ. Wild-type GBA1 increases the α-synuclein tetramer-monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice. Proc Natl Acad Sci U S A. 2021; 118(31):e2103425118.

Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformationspecific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-

synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis. 2020; 146:105086.

Melki R. Alpha-synuclein and the prion hypothesis in Parkinson's disease. Rev Neurol (Paris). 2018; 174(9):644-652.

Papagiannakis N, Koros C, Stamelou M, Simitsi AM, Maniati M, Antonelou R, Papadimitriou D, Dermentzaki G, Moraitou M, Michelakakis H, Stefanis L. Alpha-synuclein dimerization in erythrocytes of patients with genetic and non-genetic forms of Parkinson's Disease. Neurosci Lett.

; 672:145-149.

Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol Cell Neurosci. 2019; 98:140-154.

Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I.. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci. 2020; 14:578993.

Yedlapudi D, Joshi GS, Luo D, Todi SV, Dutta AK. Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model. Sci Rep. 2016; 6:38510.

Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol. 2021; 893:173837.

Tanaka G, Yamanaka T, Furukawa Y, Kajimura N, Mitsuoka K, Nukina N. Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem Biophys Res Commun. 2019; 508(3):729-734.

Sorrentino ZA, Hass E, Vijayaraghavan N, Gorion KM, Riffe CJ, Dhillon JKS, Giasson BI. Carboxy-terminal truncation and phosphorylation of α-synuclein elongates survival in a prion-like seeding mouse model of synucleinopathy. Neurosci Lett. 2020; 732:135017.

Román-Vendrell C, Medeiros AT, Sanderson JB, Jiang H, Bartels T, Morgan JR. Effects of Excess Brain-Derived Human α-Synuclein on Synaptic Vesicle Trafficking. Front Neurosci. 2021; 15:639414.

Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther. 2021; 29(10):3059-3071.

Alza NP, Iglesias González PA, Conde MA, Uranga RM, Salvador GA. Lipids at the Crossroad of α-Synuclein Function and Dysfunction: Biological and Pathological Implications. Front Cell Neurosci. 2019; 13:175.

Ugalde CL, Lawson VA, Finkelstein DI, Hill AF. The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem. 2019; 294(23):9016-9028.

Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. Biochim Biophys Acta Proteins Proteom. 2019; 1867(10):890-908.

Mukhopadhyay A, Mehra S, Kumar R, Maji SK, Krishnamoorthy G, Sharma KP. α-Synuclein Spontaneously Adopts Stable and Reversible α-Helical Structure in WaterLess Environment. Chemphyschem. 2019; 20(21):2783-2790.

García-Sanz P, Aerts JMFG, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. Mov Disord. 2021; 36(5):1070-1085.

Dos-Santos-Pereira M, Acuña L, Hamadat S, Rocca J, González‐Lizárraga F, Chehín R, Sepulveda‐Diaz J, Del‐Bel E, Raisman‐Vozari R, Michel PP. Microglial glutamate release evoked by α-synuclein aggregates is prevented by dopamine. Glia. 2018; 66(11):2353-2365.

Lassen LB, Gregersen E, Isager AK, Betzer C, Kofoed RH, Jensen PH. ELISA method to detect α-synuclein oligomers in cell and animal models. PLoS One. 2018; 13(4):e0196056.

Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJ, Osterberg VR, Brockway NL, Pizano S, Glover G, Weissman TA. In vivo aggregation of presynaptic alphasynuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis. 2021; 152:105291.

Rodrigues PV, de Godoy JVP, Bosque BP, Neto DPA, Tostes K, Palameta S, Garcia-Rosa S, Tonoli CCC, de Carvalho HF, Fonseca MC. Transcellular propagation of fibrillar α-synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent. Sci Rep. 2022; 12(1):4168.

Oertel WH. Recent advances in treating Parkinson’s disease. F1000Res. 2017; 6(F1000): 260.

Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019; 99(7):912-928.

Dehay B, Vila M, Bezard E, Brundin P, Kordower JH. Alpha-synuclein propagation: New insights from animal models. Mov Disord. 2016; 31(2):161-168.

Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, Rodrigues M, Yapom R, Little D, Dolt KS, Kunath T. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ. 2020; 27(10):2781-2796.

Uemura N, Ueda J, Okuda S, Sawamura M, Takahashi R. α-Synuclein Propagation Mouse Models of Parkinson's Disease. Methods Mol Biol. 2021; 2322:119-130.

Lokappa SB, Suk JE, Balasubramanian A, Samanta S, Situ AJ, Ulmer TS. Sequence and membrane determinants of the random coil-helix transition of α-synuclein. J Mol Biol.2014; 426(10):2130-2144.

Mohankumar T, Chandramohan V, Lalithamba HS, Jayaraj RL, Kumaradhas P, Sivanandam M, Hunday G, Vijayakumar R, Balakrishnan R, Manimaran D, Elangovan N. Author Correction: Design and Molecular dynamic Investigations of 7,8-Dihydroxyflavone Derivatives as

Potential Neuroprotective Agents Against Alpha-synuclein. Sci Rep. 2020; 10(1):5085.

Rondon-Villarreal P and Lopez WOC. Identification of potential natural neuroprotective molecules for Parkinson's disease by using chemoinformatics and molecular docking. J Mol Graph Model. 2020; 97:107547.

Oueslati A, Fournier M, Lashuel HA. Role of posttranslational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog Brain Res. 2010; 183:115-145.

Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med.2017; 40(2):271-280.

Reynolds NP, Soragni A, Rabe M, Verdes D, Liverani E, Handschin S, Riek R, Seeger S. Mechanism of membrane interaction and disruption by α-synuclein. J Am Chem Soc.2011; 133(48):19366-19375.

Ma MR, Hu ZW, Zhao YF, Chen YX, Li YM. Phosphorylation induces distinct alpha-synuclein strain formation. Sci Rep. 2016; 6:37130.

Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013; 14(1):38-48.

Zheng W, Zhang Z, Ye Y, Wu Q, Liu M, Li C. Phosphorylation dependent α-synuclein degradation monitored by in-cell NMR. Chem Commun Camb). 2019; 55(75):11215-11218.

Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002; 4(2):160-164.

Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VMY, Trojanowski JQ, Mann D, Iwatsubo T. Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem. 2002; 277(50):49071-49076.

Muntané G, Ferrer I, Martinez-Vicente M. α-synuclein phosphorylation and truncation are normal events in the adult human brain. Neurosci. 2012; 200:106-119.

Breydo L, Wu JW, Uversky VN. Alpha-synuclein misfolding and Parkinson's disease. Biochim Biophys Acta. 2012; 1822(2):261-285.

Atik A, Stewart T, Zhang J. Alpha-Synuclein as a Biomarker for Parkinson's Disease. Brain Pathol. 2016; 26(3):410-418.

Gan SD and Patel KR. Enzyme immunoassay and enzymelinked immunosorbent assay. J Invest Dermatol. 2013; 133(9):e12.

Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002; 9(4):789-798.

Hudson SA, Ecroyd H, Kee TW, Carver JA. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. 2009; 276(20):5960-5972.

MacPhee DJ. Methodological considerations for improving Western blot analysis. J Pharmacol Toxicol Methods. 2010; 61(2):171-177.

Schiavone NM, Pirrone GF, Guetschow ED, Mangion I, Makarov AA. Combination of circular dichroism spectroscopy and size-exclusion chromatography coupled with HDX-MS for studying global conformational structures of peptides in solution. Talanta. 2019; 194:177-182.

Šmidlehner T, Bonnet H, Chierici S, Piantanida I. Fluorescently-labelled amyloid paired helical filaments (PHF) in monitoring its fibrillation kinetics. Bioorg Chem. 2020; 104:104196.

Zhao Y, Ye F, Xu J, Liao Q, Chen L, Zhang W, Sun H, Liu W, Feng F, Qu W. Design, synthesis and evaluation of novel bivalent β-carboline derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem. 2018; 26(13):3812-3824.

Rana M, Cho HJ, Roy TK, Mirica LM, Sharma AK. Azodyes based small bifunctional molecules for metal chelation and controlling amyloid formation. Inorganica Chim Acta. 2018; 471:419-429.

Deckert A, Waudby CA, Wlodarski T, Wentink AS, Wang X, Kirkpatrick JP, Paton JF, Camilloni C, Kukic P, Dobson CM, Vendruscolo M. Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proc Natl Acad Sci U S A. 2016; 113(18):5012-5017.

Nath A, Sammalkorpi M, DeWitt DC, Trexler AJ, ElbaumGarfinkle S, O’Hern CS, Rhoades E. The conformational ensembles of α-synuclein and tau: combining singlemolecule FRET and simulations. Biophys J. 2012; 103(9):1940-1949.

Lindahl ER. Molecular dynamics simulations. Molecular modeling of proteins: Springer; 2008: 3-23 p.

Sun Y, Kakinen A, Zhang C, Yang Y, Faridi A, Davis TP, Cao W, Ke PC, Ding F. Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale. 2019; 11(24):11933-11945.

Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson's disease - lessons and emerging principles. Mol Neurodegener. 2019; 14(1):29.

Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol. 2017; 298(Pt B):225-235.

Bhatt MA, Messer A, Kordower JH. Can intrabodies serve as neuroprotective therapies for Parkinson's disease? Beginning thoughts. J Parkinsons Dis. 2013; 3(4):581-591.

De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. Biochim Biophys Acta. 2014; 1844(11):1907-1919.

Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. NPJ Parkinsons Dis. 2018; 4:25.

Wegrzynowicz M, Bar-On D, Calo L, Anichtchik O, Iovino M, Xia J, Ryazanov S, Leonov A, Giese A, Dalley JW,Griesinger C. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model. Acta Neuropathol. 2019; 138(4):575-595.

Tapias V, McCoy JL, Greenamyre JT. Phenothiazine normalizes the NADH/NAD(+) ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson's disease. Redox Biol. 2019; 24:101164.

Yu L, Cui J, Padakanti PK, Engel L, Bagchi DP, Kotzbauer PT, Tu Z. Synthesis and in vitro evaluation of α-synuclein ligands. Bioorg Med Chem. 2012; 20(15):4625-4634.

Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci. 2018; 19(2):458.

Lu JH, Ardah MT, Durairajan SS, Liu L-F, Xie L-X, Fong W-FD, Hasan MY, Huang J-D, El‐Agnaf OMA, Li M. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. Chembiochem. 2011; 12(4):615-624.

Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL. The flavonoid baicalein inhibits fibrillation of alphasynuclein and disaggregates existing fibrils. J Biol Chem. 2004; 279(26):26846-26857.

Ghasemi Tigan M, Ghahghaei A, Lagzian M. In-vitro and in-silico investigation of protective mechanisms of crocin against E46K α-synuclein amyloid formation. Mol Biol Rep. 2019; 46(4):4279-4292.

Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Contr Rel. 2019; 296:190-201.

Garavello W, Rossi M, McLaughlin JK, Bosetti C, Negri E, Lagiou P, Talamini R, Franceschi S, Parpinel M, Dal Maso L, La Vecchia C. Flavonoids and laryngeal cancer risk in Italy. Ann Oncol. 2007; 18(6):1104-1109.

Ara G, Afzal M, Jyoti S, Siddique YH. Effect of myricetin on the transgenic Drosophila model of Parkinson’s disease. Bull Fac Pharm Cairo Univ. 2017; 55(2):259-262.

Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurol. 2012; 78(15):1138-1145.

Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem. 2015; 134(5):943-955.

Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 2008; 3(3-4):115-126.

Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, Spanier B. Structural features and bioavailability of four flavonoids and their implications for lifespanextending and antioxidant actions in C. elegans. Mech Ageing Dev. 2012; 133(1):1-10.

Ono K, Condron MM, Ho L, Wang J, Zhao W, Pasinetti GM, Teplow DB. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity. J Biol Chem. 2008; 283(47):32176-32187.

Rawlings ND, Polgar L, Barrett AJ. A new family of serinetype peptidases related to prolyl oligopeptidase. Biochem J.1991; 279( Pt 3)(Pt 3):907-908.

Svarcbahs R, Julku UH, Norrbacka S, Myöhänen TT. Removal of prolyl oligopeptidase reduces alpha-synuclein toxicity in cells and in vivo. Sci Rep. 2018; 8(1):1552.

Brandt I, Gérard M, Sergeant K, Devreese B, Baekelandt V, Augustyns K, Scharpé S, Engelborghs Y, Lambeir A-M. Prolyl oligopeptidase stimulates the aggregation of alphasynuclein. Peptides. 2008; 29(9):1472-1478.

Savolainen MH, Richie CT, Harvey BK, Männistö PT, Maguire-Zeiss KA, Myöhänen TT. The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alphasynuclein clearance and autophagy in A30P transgenic mouse. Neurobiol Dis. 2014; 68:1-15.

Svarcbahs R, Julku UH, Myöhänen TT. Inhibition of Prolyl Oligopeptidase Restores Spontaneous Motor Behavior in the α-Synuclein Virus Vector-Based Parkinson's Disease Mouse Model by Decreasing α-Synuclein Oligomeric Species in Mouse Brain. J Neurosci. 2016; 36(49):12485-

Gadad BS, Britton GB, Rao KS. Targeting oligomers in neurodegenerative disorders: lessons from α-synuclein, tau, and amyloid-β peptide. J Alzheimers Dis. 2011; 24 Suppl 2:223-232.

Ryan P, Xu M, Jahan K, Davey AK, Bharatam PV, Anoopkumar-Dukie S, Kassiou M, Mellick GD, Rudrawar S. Novel Furan-2-yl-1H-pyrazoles Possess Inhibitory Activity against α-Synuclein Aggregation. ACS Chem Neurosci. 2020; 11(15):2303-2315.

Schneider SA and Alcalay RN. Precision medicine in Parkinson's disease: emerging treatments for genetic Parkinson's disease. J Neurol. 2020; 267(3):860-869.

Malik N, Kornelsen R, McCormick S, Colpo N, Merkens H, Bendre S, Benard F, Sossi V, Schirrmacher R, Schaffer P. Development and biological evaluation of[(18)F]FMN3PA & [(18)F]FMN3PU for leucine-rich repeat kinase 2 (LRRK2) in vivo PET imaging. Eur J Med Chem. 2021;

:113005.

Downloads

Published

2022-05-01

How to Cite

Y. Najib, S., O. Ayipo, Y., Thenmoly, D., & N. Mordi, M. (2022). Potential Alternative Inhibitors of Alpha-Synuclein and Effective Treatment of Parkinson’s Disease. Tropical Journal of Natural Product Research (TJNPR), 6(5), 694–704. Retrieved from https://www.tjnpr.org/index.php/home/article/view/49