In Silico Screening and ADMET Profiling of Daidzein and Genistein from Fermented Soybean (Tempeh) against Antiangiogenic and Inflammatory Proteins: Potential Antipreeclampsia Agents
Main Article Content
Abstract
Preeclampsia is a pregnancy complication characterized by multiorgan damage and the latest preeclampsia treatment targets oxidative stress and inflammation. The use of fermented natural products such as fermented soybean, which contains the antioxidants Daidzein and Genistein can ameliorate the aforementioned conditions. Therefore, this study aimed to examine the potential of dainzein and genistein from fermented Soybean Extract (STE) as key protein targets against preeclampsia. Different tools were also used, including Protein Data Bank (PDB), SMILES downloaded from PubChem, and AutoDock 1.5.6. Validation was performed using the RSMD method, while ADMET analysis was conducted with the SwissADME and pkCMS applications. The results showed the presence of daidzein and genistein in tempeh, these two compounds indicated high interaction with all target molecules by forming hydrogen bonds and active residues. Also, ligand binding with sFlt-1 and NLRP3 showed affinity below that of the original ligand, suggesting the need for further studies on the inhibition process. Similarly, MDA and Gasdermin D showed stable affinity binding with hydrogen bonding media (<4Å). The ADMET profile showed that the two compounds have high intestinal absorption, low toxicity, and good bioavailability. These results show that daidzein and genistein from tempeh extract have good predicted druglike-ness property and potential to inhibit the protein targets in preeclampsia pathogenesis, specifically those in oxidative stress and pyroptosis. However, the effectiveness of angiogenic and inflammatory binding needs biological validation for applications as an adjuvant therapy from natural products.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Teka H, Yemane A, Abraha HE, Berhe E, Tadesse H, Gebru F, Yahya M, Tadesse Y, Gebre DH, Abrha M, Tesfay B, Tekle A. Clinical presentation, maternal-fetal, and neonatal outcomes of early-onset versus late onset preeclampsia-eclampsia syndrome in a teaching hospital in a low-resource setting: A retrospective cohort study. PLoS One. 2023;18(2):e0281952- e0281958. Doi:10.1371/journal.pone.0281952
2.Palmer OM, Das S. Preeclampsia: New Decade, New Diagnostic Efforts. J Appl Lab Med. 2020;5(6):1149–1152. Doi:10.1093/JALM/JFAA124
3.Karrar S, Hong P. Preeclampsia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available 20/12/2020from: https://www.ncbi.nlm.nih.gov/books/NBK570611/
4.Saad F, Rutaiq AH Al, Mohammed A, Saad SN Al, Aljohani AAH, Alyousef AA, Baksh AYK, Alablan MHS, Almotairi A, Abuamria R N H. Preeclampsia: A Complicated Pregnancy Condition-An Overview, Diagnosis, Management, and Nursing Interventions. J ecohumanism. 2024; 3(8): 9379-9388. Doi:10.62754/joe.v3i8.5554
5.Celiz EC, Julcamoro MMV, Hilario SV. Preeclampsia: Advances in understanding, management and prevention. SCT Proc Interdiscip Insights Innov. 2024; 3(3):393-400. Doi:10.56294/piii2025393
6.Sharma DD, Chandresh NR, Javed AD, Girgis P, Zeeshan M, Fatima SS, Arab TT, Gopidasan S, Daddala VC, Vaghasiya K V, Soofia A, Mylavarapu M. The Management of Preeclampsia: A Comprehensive Review of Current Practices and Future Directions. Cureus. 2024; 16(1):e51512- e51518. Doi:10.7759/cureus.51512
7.Wu SW, Zhang WY. Effects of Modes and Timings of Delivery on Feto-Maternal Outcomes in Women with Severe Preeclampsia: A Multi-Center Survey in Mainland China. Int J Gen Med. 2021;14(14):9681–9687. Doi:10.2147/IJGM.S335893
8.El-mazny G, Abo-Hashem EM, El-Hussiny MAB, Abdelwakil SM, Mohammed MF, Mansour M. Angiogenic Biomarkers (sFlt/PLGF): An Approach for Clinical Integration of Pre-eclampsia. Egypt J Hosp Med. 2022; 89(2):6074–6082. Doi:10.21608/ejhm.2022.268094
9.Afrose D, Chen H, Ranashinghe A, Liu C, Henessy A, Hansbro PM, Mcclements L. The diagnostic potential of oxidative stress biomarkers for preeclampsia : systematic review and meta ‑ analysis. Biol Sex Differ. 2022; 13(1):1–15. Doi:10.1186/s13293-022-00436-0
10.Banerjee S, Huang Z, Wang Z, Nakashima A, Saito S, Sharma S, Cheng S. Etiological Value of Sterile Inflammation in Preeclampsia: Is It a Non-Infectious Pregnancy Complication?. Front Cell Infect Microbiol. 2021; 11(August):1–17. Doi:10.3389/fcimb.2021.694298
11.Tenório MB, Ferreira RC, Moura FA, Bueno NB, Goulart MOF, Oliveira ACM. Oral antioxidant therapy for prevention and treatment of preeclampsia: Meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018; 28(9):865–876. Doi:10.1016/j.numecd.2018.06.002
12.Alves PRMM, Fragoso MBT, Tenório MCS, Bueno NB, Goulart MOF, Oliveira ACM. The role played by oral antioxidant therapies in preventing and treating preeclampsia : An updated meta-analysis. Nutr Metab Cardiovasc Dis. 2023; 33(7):1277–1292. Doi:10.1016/j.numecd.2023.02.003
13.Prado FG, Pagnoncelli MGB, Melo PGV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms. 2022; 10(8):1606-1612. Doi:10.3390/microorganisms10081606
14.Romulo A, Surya R. Tempe : A traditional fermented food of Indonesia and its health benefits International Journal of Gastronomy and Food Science Tempe : A traditional fermented food of Indonesia and its health benefits. IJGFS. 2022; 26(100413):1-10. Doi:10.1016/j.ijgfs.2021.100413
15.Sadeghalvad M, Mohammadi-Motlagh HR, Karaji AG, Mostafaie A. In vivo anti-inflammatory efficacy of the combined Bowman-Birk trypsin inhibitor and genistein isoflavone, two biological compounds from soybean. J Biochem Mol Toxicol. 2019; 33(12): e22406- e22412. Doi:10.1002/jbt.22406
16.Jheng HF, Takase M, Kawarasaki S, Ni Z, Mohri S, Hayashi K, Sasaki K, Kwon J, Ng, SP, Takahashi H, Nomura W, Yu R, Ochiai K, Inoue K, Kawada T, Goto T. 8-Prenyl daidzein and 8-prenyl genistein from germinated soybean modulate inflammatory response in activated macrophages. Biosci Biotechnol Biochem. 2023; 87(7):747–757. Doi:10.1093/bbb/zbad041
17.Indriyani W, Mestika LCD, Nurseta T, Norahmawati E. Effect of Soybean Extract on sFlt-1 LEVELS in Huvecs Cultures Induced by Preeclampsia Plasma. Med Lab Technol J. 2023; 9(2):122–132. Doi:10.31964/mltj.v9i2.532
18.Irnidayanti Y, Sutiono DR, Ibrahim N, Wisnuwardhani PH, Santoso A. Potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta- amyloid neurotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Brazilian J Biol. 2022; 82:1–8. Doi:10.1590/1519-6984.235781
19.Yu C, Pope M. Quadrupole Time-of-Flight Mass Spectrometry. In: Proteomics in Biology, Part B. Methods in Enzimology. 2017;. p. Part B. Available 20/09/2020 from: https://www.sciencedirect.com/topics/chemistry/quadrupole-time-of-flight-mass-spectrometry
20.Protein Data Bank.1971. Available 20/09/2024 from: https://www.rcsb.org/
21.Pubchem. 2004. Available 10/09/2024 from: https://pubchem.ncbi.nlm.nih.gov/
22.Kristianingsih A, Soetrisno, Reviono R, Wasita B. Molecular Docking Study of Quercetin from Ethanol Extract of Mimosa pudica Linn on Asthma Biomarkers. Trop J Nat Prod Res. 2024; 8(10):8640–8645. Doi:10.26538/tjnpr/v8i10.4
23.Flachsenberg F, Ehrt C, Gutermuth T, Rarey M. Redocking the PDB. J Chem Inf Model. 2024; 64(1); 219-237. Doi:10.1021/acs.jcim.3c01573
24.SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017; 7; 42717. Available from: http://www.swissadme.ch/citing.php
25.Varma MVS, Perumal OP, Panchagnula R. Functional role of P-glycoprotein in limiting peroral drug absorption: optimizing drug delivery. Curr Opin Chem Biol. 2016; 10(4):367–373. Doi:10.1016/j.cbpa.2006.06.015
26.Pillai O, Dhanikula AB, Panchagnula R. Drug delivery: an odyssey of 100 years. Curr Opin Chem Biol. 2001; 5(4):439–446. Doi:10.1016/S1367-5931(00)00226-X
27.Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016; 1117–1121. Doi:10.1002/cmdc.201600182
28.ProTox 3.0. 2018. Available 10/10/2024 from: https://tox.charite.de/protox3/
29.Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 ; 52(W1):W513–W520. Doi:10.1093/nar/gkae303
30.Debnath P, Roy UK, Zaman F, Mukherjee PK, Kar A. Exploring the Cucurbitacin E (CuE) as an Anti-Lung Cancer Lead Compound through Molecular Docking, ADMET, Pass Prediction and Drug Likeness Analysis. Trop J Nat Prod Res. 2024; 8(2):6250–6260. Doi:10.26538/tjnpr/v8i2.24
31.Kładna A, Berczyński P, Kruk I, Piechowska T, Aboul-Enein HY. Studies on the Antioxidant Properties of Some Phytoestrogens. Luminescence. 2016; 31(6):1201–1206. Doi:10.1002/BIO.3091
32.Santos-Buelga C, Feliciano AS. Flavonoids: From Structure to Health Issues. Molecules. 2017; 22(3):477-483. Doi:10.3390/MOLECULES22030477
33.Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules. 2018; 23(8):1899-1903. Doi:10.3390/molecules23081899
34.Poddar A, Anupriya, Beck P, Hora HK, Soreng NR, Shalika S, Nitin,M. New Insights on N-Methyl-D-Aspartate (NMDA) Receptor Under Combinatorial Molecular Docking and MD Simulation Studies Using Natural Bioactive Compounds Against Neurodegenerative Diseases. Int. j. res. appl. sci. biotechnol. 2024; 3(2),185-192. Doi:10.55544/jrasb.3.2.34
35.Lu Y, Sun Y, Peng Y, Zhang T, Qian F, Wang J. Inhibition of gasdermin D (GSDMD) as a promising therapeutic approach for atopic dermatitis. Int. Immunopharmacol. 2023; 124 (Pt B): 110958-110963 Doi:10.1016/j.intimp.2023.110958
36.Bell EW, Zhang Y. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminform. 2019; 11(1): 40. Doi:10.1186/s13321-019-0362-7
37.Bulusu G, Desiraju GR. Strong and Weak Hydrogen Bonds in Protein–Ligand Recognition. J Indian Inst Sci e. 2020; 100(1):31–41. Doi:10.1007/S41745-019-00141-9
38.Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016; 2(3):e1501240- e1501249. Doi: 10.1126/sciadv.1501240
39.Madushanka A, Moura RT, Verma N, Kraka E. Quantum Mechanical Assessment of Protein–Ligand Hydrogen Bond Strength Patterns: Insights from Semiempirical Tight-Binding and Local Vibrational Mode Theory. Int J Mol Sci. 2023; 24(7):6311-6320. Doi:10.3390/ijms24076311


