Antioxidant and Phytochemical Profile of Different Varieties of Mother-In-Law’s Tongue (Dracaena trifasciata (Prain) Mabb.)

Main Article Content

Dimas I. Saputra
Rika Hartati
Irda Fidrianny

Abstract

Dracaena trifasciata commonly called mother-in-law’s tongue is widely cultivated plant in Indonesia and has been traditionally used for the treatment of various diseases. This study aimed to investigate the antioxidant activity and phytochemical profile of ethanol extracts of four different varieties of Dracaena trifasciata. Four varieties of D. trifasciata leaves, including gold flame, moonshine Brazilian, banded nelsoni, and mediocipta cobra varieties were extracted by refluxing with 96% and 70% ethanol. Phytochemical constituents of the leaves were determined according to standard procedures. The antioxidant activity of the extracts was determined using the 2,2-diphenyl-1-picrylhydrazil (DPPH), Cupric Ion Reducing Antioxidant Capacity (CUPRAC), and Ferric Reducing Antioxidant Power (FRAP) assays. The total phenolic content (TPC) and total flavonoid content (TFC) of the extracts were determined using colorimetric methods. Flavonoid compounds in selected extracts were identified by high-performance liquid chromatography (HPLC). Among the four varieties, D. trifasciata var. mediopicta cobra extract had the highest antioxidant activity. The 96% ethanol extract of D. trifasciata var. moonshine Brazilian exhibited the highest TPC (138.534 ± 5.217 mg GAE/g), while the highest TFC (368.957 ± 19.461 mg QE/g) was found in the 96% ethanol extract of D. trifasciata var. gold flame. The TPC and TFC were strongly correlated with the antioxidant activity. Rutin and kaempferol were found in varying concentrations in the 96% and 70% ethanol extracts of D. trifasciata var. mediopicta cobra leaves. These findings suggest that all four varieties of D. trifasciata are potential sources of natural antioxidants.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Antioxidant and Phytochemical Profile of Different Varieties of Mother-In-Law’s Tongue (Dracaena trifasciata (Prain) Mabb.). (2025). Tropical Journal of Natural Product Research , 9(11), 5319 – 5329. https://doi.org/10.26538/tjnpr/v9i11.9

References

1.Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015; 30(1):11–26. Doi:10.1007/s12291-014-0446-0.

2.Halliwey B and Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; 2015. 20–42 p.

3.Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis MI. The Role of Reactive Oxygen Species and Oxidative Stress in Environmental Carcinogenesis and Biomarker Development. Chem Biol Interact. 2010; 188(2):334–339. Doi:10.1016/j.cbi.2010.07.010.

4.Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017; ID:8416763. Doi:10.1155/2017/8416763.

5.Luschak VI. Free Radicals, Reactive Oxygen Species, Oxidative Stresses and Their Classifications. Ukr Biochem J. 2015; 87(6):11–18.

6.Kabel AM. Free Radicals and Antioxidants: Role of Enzymes and Nutrition. J Nutr Health. 2014; 2(3):35–38.

7.Wen C, Zhang J, Feng Y, Duan Y, Ma H, Zhang H. Purification and Identification of Novel Antioxidant Peptides from Watermelon Seed Protein Hydrolysates and Their Cytoprotective Effects on H2O2-Induced Oxidative Stress. Food Chem. 2020; 327:107085. Doi:10.1016/j.foodchem.2020.107085.

8.Gao J, Li T, Chen D, Gu H, Mao X. Identification and Molecular Docking of Antioxidant Peptides from Hemp Seed Protein Hydrolysates. Food Sci Technol. 2021; 147:111453. Doi:10.1016/j.lwt.2021.111453.

9.Xia Z, Miao J, Chen B, Guo J, Ou Y, Liang X, Yin Y, Tong X, Cao Y. Purification, Identification, and Antioxidative Mechanism of Three Novel Selenium-Enriched Oyster Antioxidant Peptides. Food Res Int. 2022; 157:111400. Doi:10.1016/j.foodres.2022.111400.

10.Hyu-Pham LA, He H, Huy-Pham C. Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 2008; 4(2):89–96.

11.Guo H, Fan L, Ding L, Yang W, Zang C, Guan H. Separation and Purification of Antioxidant Peptide from Fermented Whey Protein by Lactobacillus rhamnosus B2-1. Food Sci Anim Resour. 2023; 43(1):10–24. Doi:10.5851/kosfa.2022.e101.

12.Raduan SZ, Ahmed QU, Kasmuri AR, Rusmili MRA, Mia Md.AR, Sulaiman WMAW, Mahmood MH, Shaikh MF. Antioxidant Capabilities of Litsea garciae Bark Extracts and Their Relation to the Phytochemical Compositions. Malay Appl Biol. 2022; 51(2):99–118. Doi:10.55230/mabjournal.v51i2.1979.

13.Ji X, Liu J, Liang J, Feng X, Xiaoyun L, Yingjun W, Xiangfeng C, Guangbo Q, Bing Y, Runzeng L. The Hidden Diet: Synthetic Antioxidants in Packaged Food and Their Impact on Human Exposure and Health. Environ Int. 2024; 186:108605. Doi:10.1016/j.envint.2024.108605.

14.Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. An Update of the Angiosperm Phylogeny Group Classification for The Orders and Families of Flowering Plants: APG IV. Bot J Linn Soc. 2016; 181(1):1–20. Doi:10.1111/boj.12385.

15.Thu ZM, Ko KM, Hnin TA, Chabaco A. Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities. Molecules. 2020; 25(11):2608. Doi:10.3390/molecules25112608.

16.POWO. Plants of the World Online. [Online]. 2024 [cited 2024 Jul 7]. Available From: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77164235-1.

17.L. Lingga. Sansevieria. Jakarta: Gramedia Pustaka Utama; 2008. 96 p.

18.Kingsley D, Chauhan R, Sinha P, Abraham J. Screening and Characterization of Antimicrobial Agents from Sanseveria roxburghiana and Sanseveria trifasiata. Asian J Plant Sci. 2013; 12(5):224–227. Doi:10.3923/ajps.2013.224.227.

19.Babu K and Prabhu DKS. Dracaena trifasciata (Prain) Mabb. – Traditional Use, Pharmacognosy, Phytochemistry and Pharmacology: A Comprehensive Review. J Phytopharmacol. 2024; 13(3):235–241. Doi:10.31254/phyto.2024.13309.

20.Ijoma KI, Ajiwe VIE, Ndubuisi JO. Evidence-Based Preferential In vitro Antisickling Mechanism of Three Native Nigerian Plants Used in the Management of Sickle Cell Disease. Malay J Biochem Mol Biol. 2022; 3(1):9–17.

21.Indonesia Ministry of Health. Indonesia Herbal Pharmacopoeia. 2nd ed. Jakarta: Indonesia Ministry of Health; 2017.

22.Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E. Evaluation of the Antioxidant and Hypoglycaemic Potentials of the Leaf Extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019; 3(5):170–174. Doi:10.26538/tjnpr/v3i5.2.

23.Iheanacho CM, Akubuiro PC, Oseghale IO, Imieje VO, Erharuyi O, Ogbeide KO, Jideonwo AN, Falodun A. Evaluation of the Antioxidant Activity of the Stem Bark Extracts of Anacardium occidentale (Linn) Anacardiaceae. Trop J Phytochem Pharm Sci. 2023; 2(2):65–69. Doi:10.26538/tjpps/v2i2.2.

24.Ijoma K, Ajiwe VI, Odinma S. The Organic Extracts from The Leaves of Ficus thonningii Blume, Jatropha tanjorensis JLEllis and Saroja and Justicia carnea Lindley as Potential Nutraceutical Antioxidants and Functional Foods. Trends Phytochem Res. 2023; 7(1):76–85. Doi:10.22034/tpr.2022.348611.1218.

25.Hartati R, Rompis FM, Pramastya H, Fidrianny I. Optimization of Antioxidant Activity of Soursop (Annona muricata L.) Leaf Extract Using Response Surface Methodology. Biomed Rep. 2024; 21(5):166. Doi:10.3892/br.2024.1712.

26.Munteanu IG and Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci. 2021; 22(7):3380. Doi:10.3390/ijms22073380.

27.Okafor CE, Ijoma IK, Igboamalu CA, Ezebalu CE, Eze CF, Osita-Chikeze JC, Uzor CE, Ekwuekwe AL. Secondary Metabolites, Spectra Characterization, and Antioxidant Correlation Analysis of the Polar and Nonpolar Extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia. 2024; 105(2):121–136. Doi:10.5114/bta.2024.141870.

28.Pourmorad F, Hosseinimehr SJ, Shahabimadj N. Antioxidant Activity, Phenol and Flavonoid Contents of Some Selected Iranian Medicinal Plants. Afr J Biotechnol. 2006; 5(11):1142–1145.

29.Hartati R, Febiana NA, Pramastya H, Fidrianny I. Antioxidant Activities of Stem, Leaves and Fruits Extracts of Pepino (Solanum muricatum Aiton). Pak J Biol Sci. 2024; 27(2):69–79. Doi:10.3923/pjbs.2024.69.79.

30.Berame JS, Cuenca SME, Cabilin DRP, Manaban ML. Preliminary Phytochemical Screening and Toxicity Test of Leaf and Root Parts of the Snake Plant (Sansevieria trifasciata). J Phylogenet Evol Biol. 2017; 5(3):1–7. Doi:10.4172/2324-7322.1000171.

31.Kumar A, Dwivedi SL, Tripathi IP. HPTLC Finger Print Profile and Physicochemical Analysis of Dracaena trifasciata (Snake Plant). Int J Adv Eng Manam. 2022; 4(8):293–300.

32.Puspitasari FA, Kartikasari NB, Mutiyastika S, Purnamasari R, Lusiana N, Agustina E. Effect of Different Solvents in the Extraction Process of Kelor (Moringa oleifera) Leaves on Bioactive Resources and Phenolic Acid Content. Proceedings of International Conference on Sustainable Health Promotion. 2023; 3(1):167–178.

33.Antolovich M, Prenzler PD, Patsalides E, Mcdonald S, Robards K. Methods for Testing Antioxidant Activity. Analyst. 2002; 127(1):183–198. Doi:10.1039/B109265P.

34.Jose SM and Anilkumar M. In vitro Antioxidant Activity of Litsea quinqueflora (Dennst.). Suresh. J Pharmacogn Phytochem. 2018; 7(1):3217–3221.

35.Prakash A. Antioxidant Activity. Anal Prog. 2001; 19(2):1–4.

36.Apak R, Kubilay G, Mustafa O, Saliha EC. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchim Acta. 2008; 160:413–419. Doi:10.1007/s00604-007-0749-9.

37.Cerretani L and Bendini A. Rapid Assays to Evaluate the Antioxidant Capacity of Phenols in Virgin Olive Oil. In: PreedyVR and WatsonRR, editors. Olives and Olive Oil in Health and Disease Prevention. Academic Press; 2010. 625–635 p.

38.Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, RembergSF, Wold A, Karin H, Baugerød H, AndersenLF, MoskaugJO, JacobsDR, Blomhoff R. A Systematic Screening of Total Antioxidant in Dietary Plants. J Nutr. 2002; 132(2):461–471. Doi:10.1093/jn/132.3.461.

39.Benzie IFF and Strain JJ. The Ferric Reducing Ability of Plasma as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. 1996; 239(1):70–76. Doi:10.1006/abio.1996.0292.

40.Hegerman AE, Riedl KM, Jones G, Sovik KN, Rechard NT, Hartzfeld PW, Reichel TL. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J Agric Food Chem. 1998; 46(5):1887–1892. Doi:10.1021/jf970809r.

41.WongSP, LeongLP, Koh JHW. Antioxidant Activities of Aqueous Extract of Selected Plants. Food Chem. 2006; 99(4):775–783. Doi:10.1016/j.foodchem.2005.09.006.

42.Shah MD, Gnanaraj C, Haque AE, Iqbal M. Antioxidative and Chemopreventive Effects of Nephrolepis biserrata Against Carbon Tetrachloride (CCl4)-Induced Oxidative Stress and Hepatic Dysfunction in Rats. Pharm Biol. 2015; 53(1):31–39. Doi:10.3109/13880209.2014.908044.

43.Sarjani TM, Mawardi AL, Pandia ES, Siregar ARS. Antioxidant Activity and Phytochemical Screening of Some Sansevieria Plants. Adv Soc Sci Educ Humanit Res. 2021; 576:381–384. Doi:10.2991/assehr.k.210901.077.

44.Karamova N, Gumerova S, Hassan GO, Abdul-Hafeez EY, Ibrahim OHM, Orabi MAA, Ilinskaya O. Antioxidant and Antimutagenic Potential of Extracts of Some Agavaceae Family Plants. BioNanoSci. 2016; 6(4):1-3.

45.Shahidi F, Janitha PK, Wanasundara PD. Phenolic Antioxidants. Crit Rev Food Sci Nutr. 1992; 32(1):67–103. Doi:10.1080/10408399209527581.

46.Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J Agric Food Chem. 1998; 46(5):1887–1892. Doi:10.1021/jf970809r.

47.Ruan ZP, Zhang LL, Lin YM. Evaluation of the Antioxidant Activity of Syzygium cumini Leaves. Molecules. 2008; 13(10):2545–2556. Doi:10.3390/molecules13102545.

48.Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N. Effect of Solvent Polarity on Extraction Yield and Antioxidant Properties of Phytochemicals from Bean (Phaseolus vulgaris) Seeds. Braz J Pharm Sci. 2020; 56:e18844. Doi:10.1590/s2175-97902019000418844.

49.Pratama NR, Widarta RIW, Darmawati TLP. Effect of the Solvent Type and Extraction Time with Soxhlet Method of Antioxidant Activity of Avocado (Persea americana Mill.) Seed Oil. Sci J Food Technol. 2017; 4(2):85–93.

50.Lontoc HMH, Charlene FS, Shiela AMMC, Ariane FRH, Oliver DRD. In vitro Antioxidant Activity and Total Phenolic Content of Sansevieria trifasciata (Snake Plant) Crude Ethanolic and Aqueous Leaf Extracts. Asian Pac J Health Sci. 2018; 1(1):35–58.

51.Alam MN, Roy S, Anisuzzaman SM, Rafiquzzaman M. Antioxidant Activity of the Ethanolic Extracts of Leaves, Stems and Fruits of Solanum nigrum. Pharmacogn Commun. 2012; 2(3):67–71. Doi:10.5530/pc.2012.3.15.

52.Marjoni MR, Ainun N, Zubaidah, Yuriza F, Refita N. The Effect of Different Extraction Solvents on Total Phenolic and Flavonoid Total of Snake Plant (Sansevieria trifasciata var. laurentii). J Pharm Negat Results. 2023; 14(1):38–43. Doi:10.47750/pnr.2023.14.01.008.

53.Dohre A and Surabhi Y. Impact of Two Different Methods of Extraction on Total Antioxidant Activity and Phenolic Content in an Uncommon Plant (Sansevieria trifasciata) and Commonly Consumed Fruits. Flora and Fauna. 2021; 27(1):35–41.

54.PinkySS, Sirajum M, Hossain MdA, Amir H. Antioxidant, Anti-Inflammatory, Cytotoxic and Analgesic Activities of Sensevieria trifasciata. Bangladesh Pharm J. 2020; 23(2):195–200. Doi:10.3329/bpj.v23i2.48312.

55.Chang CC, Yang MH, Wen HM, Chern JC. Estimation of Total Flavonoid Content in Propolis By Two Complementary Colometric Methods. J Food Drug Anal. 2002; 10(3):178–182.

56.Raslan MA, Abdel-Rahman RF, Fayed HM, Ogaly HA, Taher RF. Metabolomic Profiling of Sansevieria trifasciata Hort ex. Prain Leaves and Roots By HPLC-PAD-ESI/MS and Its Hepatoprotective Effect Via Activation of the NRF2/ARE Signaling Pathway in an Experimentally Induced Liver Fibrosis Rat Model. Egypt J Chem. 2021; 64(11):6647–6671. Doi:10.21608/ejchem.2021.68886.3508.

57.El-Hawary SSE, Mona EE, Mohamed AR, Zeinab YA, Amgad A, Noha EF. Sansevieria: An Evaluation of Potential Cytotoxic Activity in Reference to Metabolomic and Molecular Docking Studies. Egypt J Chem. 2021; 64(2):835–849. Doi:10.21608/ejchem.2021.61110.3228.