Computational Insights into the Interaction of Silver Nanoparticles from Mimosa pudica linnaeus with Tumor Necrosis Factor-α and Heat Shock Protein 60: An In-Silico Approach
Main Article Content
Abstract
Mimosa pudica linnaeus has been recognised for its diverse range of bioactive compounds, with antibacterial, anti-inflammatory, hepatoprotective, and antiparasitic effects. This study aims to investigate the inhibitory potential of bioactive compounds from Mimosa pudica linnaeus against Blastocystis sp., TNF-α, and HSP60 using an in-silico method. The analysis involved predicting biological activity using PASS, evaluating drug-likeness according to Lipinski’s Rule of Five, and assessing the ADME properties and toxicity profiles of Mimosa pudica linnaeus phytochemicals. The PASS analysis showed that Apigenin, p-Hydroxybenzoic acid, Quercetin, and Naringenin had the highest probability of activity across various categories. Among the 18 compounds analysed, 13 met all Lipinski’s criteria, while 17 showed high gastrointestinal absorption. However, 9 compounds exhibited high toxicity effects. Molecular docking analysis revealed that Jasmonic acid, Naringenin, and Monoamidomalonic acid exhibited lower binding affinities than metronidazole (a standard drug) against Blastocystis sp. Luteolin and Naringenin also showed potential as competitive inhibitors of TNF-α. However, 4-(2-phenylethyl) phenol and Fisetin showed the lowest binding affinity scores of -7.47 and -7.75 kcal/mol, respectively, against HSP60. Molecular docking results showed that the ligands interacted with the target proteins via hydrophobic and hydrogen-bond interactions, suggesting the formation of stable protein-ligand complexes. These results show that bioactive compounds of Mimosa pudica linnaeus have potential as therapeutic candidates with promising anti-inflammatory properties.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Fusaro C, Bernal JE, Baldiris-Ávila R, González-Cuello R, Cisneros-Lorduy J, Reales-Ruiz A, Castro-Orozco R, Sarria-Guzmán Y. Molecular prevalence and subtypes distribution of Blastocystis sp. in humans of Latin America: A systematic review. Trop Med Infect Dis.2024;9(2):38. Doi: 10.3390/tropicalmed9020038.
2.Stensvold CR, Tan KSW, Clark CG. Blastocystis. Trends Parasitol. 2020;36(3):315–316. Doi: 10.1016/j.pt.2019.12.008.
3.World Health Organization, World Bank. Tracking Universal Health Coverage: Global Monitoring Report. Geneva: World Health Organization and the International Bank for Reconstruction and Development / The World Bank; 2023. Doi: 10.1596/40348.
4.Miksusanti, Apriani EF, Hidayat DN. Viability and antibacterial activity of Bifidobacterium bifidum in fermented Robusta coffee for diarrhea treatment. Indones J Pharm Pharm Sci. 2022;9(3):305–313. Doi: 10.20473/jfiki.v9i32022.305-313.
5.Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HGHJ, de Vos WM, O’Toole PW, Cotter PD. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol. 2014;90(1):326–330. Doi: 10.1111/1574-6941.12396.
6.Rojas-Velázquez L, Morán P, Serrano-Vázquez A, Portillo-Bobadilla T, González E, Pérez-Juárez H, Hernández E, Partida-Rodríguez O, Nieves-Ramírez M, Padilla A, Zaragoza M, Ximénez C. The regulatory function of Blastocystis spp. on the immune-inflammatory response in the gut microbiome. Front. Cell. Infect. Microbiol. 2022;12:967724. DOI: 10.3389/fcimb.2022.967724
7.Wahid BZ, Haque MA, Gazi MA, Fahim SM, Faruque ASG, Mahfuz M, Ahmed T. Site-specific incidence rate of Blastocystis hominis and its association with childhood malnutrition: Findings from a multi-country birth cohort study. Am. J. Trop. Med. Hyg. 2023;108(5):887–894. DOI: 10.4269/ajtmh.22-0662
8.Cao M, Zhang S, Nan H, Huang J, Zhang C, Sun Y, Liu L, Wang Y, Lu X, Ma L. Integrated omics reveal the pathogenic potential of Blastocystis sp. ST2. Transboundary and Emerging Diseases. 2024;Advance online publication. DOI: 10.1155/2024/6025236
9.Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Páez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and future therapeutic approaches to barrier dysfunction. Frontiers in Nutrition. 2021;8:718093. DOI: 10.3389/fnut.2021.718093
10.Scalia F, Carini F, David S, Giammanco M, Mazzola M, Rappa F, Bressan NI, Maida G, Tomasello G. Inflammatory bowel diseases: An updated overview on the heat shock protein involvement. Int. J. Mol. Sci. 2023;24(15):12129. DOI: 10.3390/ijms241512129
11.Mandal AK, Pandey A, Sah RK, Baral A, Sah P. In vitro antioxidant and antimicrobial potency of Mimosa pudica of Nepalese Terai region: Insight into L-mimosine as an antibacterial agent. Evid. Based Complement. Alternat. Med. 2022;2022:6790314. DOI: 10.1155/2022/6790314
12.Fotio AL, Tagne MAF, Noubissi PA, Nguepi MSD, Emégam NK. Mimosa pudica leaf aqueous extract attenuates experimental ulcerative colitis in rats via suppression of MPO and IL-1β signalling pathways and improvement of the oxidative status. Phytomed. Plus. 2024;4(2):100559. DOI: 10.1016/j.phyplu.2024.100559
13.Menezes JCJMS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci. Total Environ. 2021;769:145168. DOI: 10.1016/j.scitotenv.2021.145168
14.Taji R, Sadraei J, Pirestani M, Bahadory S. Investigating the effect of silver, chitosan, and curcumin nanoparticles on Blastocystis spp. and comparing it with metronidazole in vitro. International Journal of Enteric Pathogens. 2022;10(4):125–128. DOI: 10.34172/ijep.2022.5561
15.Alexeree SMI, Abou-Seri HM, El-Din HES, Youssef D, Ramadan MA. Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis. Lasers Med. Sci. 2024;39(1):43. DOI: 10.1007/s10103-024-03984-6
16.Mukherjee R, Chang CM, Pandey RP, Hameed S. Role of nanomedicine in overcoming antimicrobial resistance: Challenges and opportunities. In: Wani MY, Wani IA, Rai A, editors. Nanotechnology-Based Strategies for Combating Antimicrobial Resistance. Singapore: Springer; 2024. p.45–60. DOI: 10.1007/978-981-97-2023-1_2
17.Tocci S, Das S, Sayed IM. An update on Blastocystis: Possible mechanisms of Blastocystis-mediated colorectal cancer. Microorganisms. 2024;12(9):1924. DOI: 10.3390/microorganisms12091924
18.Zhang X, Yin L, Tang M, Bian X, Zhao G. Application of silver nanoparticles in parasite treatment: Mechanisms and prospects. Pharmaceutics. 2023;15(7):1783. DOI: 10.3390/pharmaceutics15071783
19.Wang X, Yan C, Wang T, Li Y, Zheng Z. Mechanisms of luteolin against gastro-esophageal reflux disease based on network pharmacology, molecular docking, and molecular dynamics simulation. Cell Biochem. Biophys. 2025;83(1):403–414. DOI: 10.1007/s12013-024-01471-x
20.Kumar V. Phytochemical, pharmacological activities and Ayurvedic significances of magical plant Mimosa pudica. Mini-Rev. Org. Chem. 2021;18(3):296–312.
21.Palanichamy C, Pavadai P, Panneerselvam T, Arunachalam S, Babkiewicz E, Pandian RK, Jeyarajaguru KS, Ammunje DN, Kannan S, Chandrasekaran J, Sundar K, Maszczyk P, Kunjiappan S. Aphrodisiac performance of bioactive compounds from Mimosa pudica Linn.: In silico molecular docking and dynamics simulation approach. Molecules. 2022;27(12):3799. DOI: 10.3390/molecules27123799
22.Elmaidomy AH, Abdelmohsen UR, Sayed AM, Altemani FH, Algehainy NA, Soost D, Paululat T, Bringmann G, Mohamed EM. Antiplasmodial potential of phytochemicals from Citrus aurantifolia peels: A comprehensive in vitro and in silico study. BMC Chem. 2024;18:60. DOI: 10.1186/s13065-024-01162-x
23.Huang L, Kim MY, Cho JY. Immunopharmacological activities of luteolin in chronic diseases. Int. J. Mol. Sci . 2023;24(3):2136. DOI: 10.3390/ijms24032136
24.Gopal SK, Rangasamy M, Balasubramaniam N. In-silico docking analysis of phytochemicals from Mimosa pudica L. leaves as an antiviral agent against herpes simplex virus type I. Int. J. Pharm. Sci. Lett. 2023;1(1):49–57.
25.Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Fuloria S, Meenakshi DU, Jakhmola V, Pandey M, Singh SK, Dua K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J. Biochem. Mol. Toxicol. 2023;37(11):e23482. DOI: 10.1002/jbt.23482
26.Alam F, Alam R, Yusuf ATM, Ripa JD, Nithin RD, Barua S, Kabir MF, Hong ST, Chung HJ. Phytochemical screening and neuro-pharmacological activity of Mimosa pudica flowers: Integrating in vitro, in silico, and in vivo approaches. Heliyon.2025;11(3):e42017. DOI: 10.1016/j.heliyon.2025.e42017
27.Gerçek E, Zengin H, Erişir FE, Yılmaz Ö. Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2021;241:108969. DOI: 10.1016/j.cbpc.2021.108969
28.Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules.2022;27(9):2901. DOI: 10.3390/molecules27092901
29.Gholam GM, Firdausy IA, Artika IM, Abdillah RM, Firmansyah RP, Irsal RAP. Molecular docking: Bioactive compounds of Mimosa pudica as an inhibitor of Candida
30.Nisa A, Kurniawati A, Faridah DN. Morphological characters, phenolic and flavonoid contents of Vitex trifolia accessions from Lamongan District, Indonesia. Biodiversitas. 2023;24(3):1635–1641.
31.Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, Ramakrishna S, Berto F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants. 2020;9(12):1309. DOI: 10.3390/antiox9121309
32.Zouine N, El Ghachtouli N, El Abed S, Ibnsouda Koraichi S. A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Sci. Afr. 2024;26:e02395. DOI:10.1016/j.sciaf.2024.e02395.
33.Rahayu Y. Data Molecular Docking. Figshare. Dataset.https://doi.org/10.6084/m9.figshare.28587656.v1
34.Rahayu Y. Interaction Bound Compound. Figure. 2025. https://doi.org/10.6084/m9.figshare.28587695.v1


