In Silico Molecular Docking and Pharmacokinetics Studies on Potential Plasmodium falciparum Casein Kinase-2 Alpha (PfCK-2α) Inhibitors from Alstonia boonei Stem Bark

Main Article Content

Obioma U. Njoku
Christian C. Chibuogwu
John O. Ogbodo
Sophia U. Chibuogwu
Stephen C. Nnemolisa
Micheal C. Chukwu
Chidinma J. Onyeanusi
Kate A. Igwilo
Obiora C. Ugwu
Mitchelle C. Nwankwo

Abstract

Although significant efforts have been made to reduce the malaria burden, the development and spread of resistance by the malaria parasite have necessitated the development of better alternatives to existing therapies. The role of Plasmodium falciparum casein kinase-2 alpha (PfCK-2α) in sexual and asexual blood stages highlights its potential as a target for multistage antimalarial drugs. This study aimed to determine the antimalarial potential of bioactive compounds from Alstonia boonei stem bark using computational methods. The bioactive constituents were characterized using UPLC-QTOF-MS, and the identified compounds were docked against Plasmodium falciparum casein kinase-2 alpha (PfCK-2α) using Molecular docking tools. UPLC-QTOF-MS analysis structurally characterized 85 compounds. Ricinoleic acid and corosolic acid are among the compounds showing high retention times. Docking studies revealed that the selected compounds demonstrated higher binding affinity (-8.6 to -11.0 kcal/mol) than the standard drug (Artesunate) (-7.8 kcal/mol). These compounds interacted favorably with the binding pocket amino acid residues (Lys72, Ile120, Ser179, Tyr119, Tyr54, Glu118, and Ser55). This study, therefore, demonstrates the antimalarial potential of the A. boonei phytoconstituents against PfCK-2α. Although this study holds a lot of promise, further investigation of the safety and efficiency of these identified compounds is required.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Christian C. Chibuogwu, Department of Biochemistry, University of Nigeria, Nsukka, Nigeria

Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria

Stephen C. Nnemolisa, Department of Biochemistry, University of Nigeria, Nsukka, Nigeria

Centre for Genomic Research in Biomedicine, Mountain-Top University, Ogun State.

How to Cite

In Silico Molecular Docking and Pharmacokinetics Studies on Potential Plasmodium falciparum Casein Kinase-2 Alpha (PfCK-2α) Inhibitors from Alstonia boonei Stem Bark . (2025). Tropical Journal of Natural Product Research , 9(7), 3385 – 3397. https://doi.org/10.26538/tjnpr/v9i7.67

References

1 Darko B A, Owusu-Asenso CM, Mensah A, Seyram CA, Dzotefe GB, Ebobabaara TB, Opoku-Gyebi FBY and Gordor BC. Global trends in the burden of malaria: Contemporary diagnostic approaches, and treatment strategies, World J. Adv. Res. Rev. 2023; 20: 258–272. https://doi.org/10.30574/wjarr.2023.20.1.2038. DOI: https://doi.org/10.30574/wjarr.2023.20.1.2038

2 Eboh A, Adebayo AO. Addressing malaria incidence in Africa through health care expenditure and access to basic sanitation services, Discov. Heal. Syst. 2023; 2(1): 37. https://doi.org/10.1007/s44250-023-00052-8. DOI: https://doi.org/10.1007/s44250-023-00052-8

3 Okagu IU, Aguchem RN, Ezema CA, Ezeorba TPC, Eje OE, Ndefo JC. Molecular mechanisms of hematological and biochemical alterations in malaria: A review, Mol. Biochem. Parasitol. 2022; 247: 111446. https://doi.org/10.1016/j.molbiopara.2021.111446. DOI: https://doi.org/10.1016/j.molbiopara.2021.111446

4 Ezema CA, ·Okagu IU, Prince, Ezeorba TPC. Escaping the enemy’s bullets: an update on how malaria parasites evade host immune response, Parasitol. Res. 2023; 122: 1715–1731. https://doi.org/10.1007/s00436-023-07868-6. DOI: https://doi.org/10.1007/s00436-023-07868-6

5 Oladipo HJ, Tajudeen YA, Oladunjoye IO, Yusuff SI, Yusuf RO, Oluwaseyi EM, AbdulBasit MO, Adebisi YA, El-Sherbini MS. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers, Ann. Med. Surg. 2022: 81. https://doi.org/10.1016/j.amsu.2022.104366. DOI: https://doi.org/10.1016/j.amsu.2022.104366

6 Balikuddembe JK, Reinhardt JD, Zeng W, Tola H, Di B. Public health priorities for Sino-Africa cooperation in Eastern Africa in context of flooding and malaria burden in Children: a tridecadal retrospective analysis, BMC Pub Health 2023; 23: 1–9. https://doi.org/10.1186/s12889-023-16220-7. DOI: https://doi.org/10.1186/s12889-023-16220-7

7 Owoloye A, Enejoh OA, Akanbi OM, Bankole OM. Molecular docking analysis of Plasmodium falciparum dihydroorotate dehydrogenase pfDHODH from towards the design of effective inhibitors. Bioinfo 2020; 16: 672–678. https://doi.org/10.6026/97320630016672. DOI: https://doi.org/10.6026/97320630016672

8 Belachew EB. Immune Response and Evasion Mechanisms of Plasmodium falciparum Parasites, J. Immunol. Res. 2018; 2018: 1–6. https://doi.org/10.1155/2018/6529681. DOI: https://doi.org/10.1155/2018/6529681

9 Adams L, Issahaku AR, Agoni C, Afiadenyo M, Asamoah K, Moane S, Obiri -Yeboah D, McKeon-Bennett M. In silico identification of potential PvFKBP35 inhibitors from Entadrophragma angolense Limonoids extracts as antimalarial agents, Info Med. Unlock 2023; 41: 101319. https://doi.org/10.1016/j.imu..101319. DOI: https://doi.org/10.1016/j.imu.2023.101319

10 Stanisic DI, Good MF. Malaria Vaccines: Progress to Date, BioDrugs 2023; 37: 737–756. https://doi.org/10.1007/s40259-023-00623-4. DOI: https://doi.org/10.1007/s40259-023-00623-4

11 Sato S. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology, J. Physiol. Anthropol. 2021; 40: 1–13. https://doi.org/10.1186/s40101-021-00254-0. DOI: https://doi.org/10.1186/s40101-020-00251-9

12 Sarfo JO, Amoadu M, Kordorwu PY, Adams AK, Gyan TB, Osman AG, Asiedu I, Ansah AW. Malaria amongst children under five in sub-Saharan Africa: a scoping review of prevalence, risk factors and preventive interventions, Eur. J. Med. Res. 2023; 28: 1–14. https://doi.org/10.1186/s40001-023-01046-1. DOI: https://doi.org/10.1186/s40001-023-01046-1

13 Ouji M, Augereau JM, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination, Paras 2018: 25. https://doi.org/10.1051/parasite/2018021. DOI: https://doi.org/10.1051/parasite/2018021

14 Noreen N, Ullah A, Salman SM, Mabkhot Y, Alsayari A, Badshah SL. New insights into the spread of resistance to artemisinin and its analogues, J. Glob. Antimicrob. Resist. 2021; 27: 142–149. https://doi.org/10.1016/j.jgar.2021.09.001. DOI: https://doi.org/10.1016/j.jgar.2021.09.001

15 Nnemolisa SC, Chukwurah CC, Edeh SC, Aguchem RN, Chibuogwu CC, Aham EC, Chukwu MC, Obiora MO, Anyebe DE, Okagu IU. Antidiabetic and antioxidant potentials of Pleurotus ostreatus -derived compounds: An in vitro and in silico approach, Food Chem. Adv. 2024; 4: 100639. https://doi.org/10.1016/j.focha.2024.100639. DOI: https://doi.org/10.1016/j.focha.2024.100639

16 Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, Owono LCO. The potential of anti-malarial compounds derived from African medicinal plants: A review of pharmacological evaluations from 2013 to 2019, Malar. J. 2020; 19: 1–35. https://doi.org/10.1186/s12936-020-03231-7. DOI: https://doi.org/10.1186/s12936-020-03231-7

17 Uzor PF. Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies, Evidence-Based Compl. Altern. Med. 2020. https://doi.org/10.1155/2020/8749083. DOI: https://doi.org/10.1155/2020/8749083

18 Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: An update, Malar. J. 2019; 18: 1–62. https://doi.org/10.1186/s12936-019-3026-1. DOI: https://doi.org/10.1186/s12936-019-3026-1

19 Chukwurah CC, Nnemolisa SC, Chibuogwu CC, Aguchem RN, Ezeobi JC, Ihionu AN, Okagu IU. In vitro Antidiabetic Studies of Aqueous Extract of Pleurotus ostreatus Grown on Different Substrates, Res J Phyto 2023; 6081: 37–47. DOI: https://doi.org/10.3923/rjp.2023.37.47

20 Adjouzem CF, Gilbert A, Mbiantcha M, Yousseu WN, Matah VMB, Djuichou NSF, Tsafack EG, Atsamo AD. Effects of Aqueous and Methanolic Extracts of Stem Bark of Alstonia boonei de Wild. (Apocynaceae) on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Wistar Rats, Evidence-Based Compl. Altern. Med. 2020. https://doi.org/10.1155/2020/4918453. DOI: https://doi.org/10.1155/2020/4918453

21 Atanu FO, Idih FM, Nwonuma CO, Hetta HF, Alamery S, El-Saber GB. Evaluation of Antimalarial Potential of Extracts from Alstonia boonei and Carica papaya in Plasmodium berghei -Infected Mice, Evidence-Based Compl. Altern. Med. 2021. https://doi.org/10.1155/2021/2599191. DOI: https://doi.org/10.1155/2021/2599191

22 Akinmurele OJ, Sonibare MA, Elujoba AA, Ogunlakin AD, Yeye OE, Gyebi GA, Ojo OA, Alanzi AR. Antispasmodic Effect of Alstonia boonei De Wild. and Its Constituents: Ex Vivo and In Silico Approaches, Mol 2023: 28. https://doi.org/10.3390/ molecules28207069. DOI: https://doi.org/10.3390/molecules28207069

23 Anyanwu GO, Ejike UD, Gyebi GA, Rauf K, Nisar UR, Iqbal J, Zaib S, Usunobun U, Onyeneke EC, Alotaibi BS, Batiha GSE. Phytochemical analysis, in vitro and in silico effects from Alstonia boonei De Wild stem bark on selected digestive enzymes and adipogenesis in 3T3-L1 preadipocytes, BMC Compl. Med. Ther. 2023; 23: 1–16. https://doi.org/10.1186/s12906-023-04202-6. DOI: https://doi.org/10.1186/s12906-023-04236-w

24 Tepongning RN, Lucantoni L, Nasuti CC, Dori GU, Yerbanga SR, Lupidi G, Marini C, Rossi G, Esposito F, Habluetzel F. Potential of a Khaya ivorensis - Alstonia boonei extract combination as an antimalarial prophylactic remedy, J. Ethnopharm. 2011; 137: 743–751. https://doi.org/10.1016/j.jep.2011.06.036. DOI: https://doi.org/10.1016/j.jep.2011.06.036

25 Uadia PO, Orumwensodia KO. Antimalarial Activity of Extracts and Partially Purified Fractions of Alstonia boonei De Wild. Afr Sci. 2023; 24: 305–317. https://doi.org/10.26538/a fricanscient ist.24.2.202306020. DOI: https://doi.org/10.26538/africanscientist.24.2.202306020

26 Omoya F, Oyebola TF. Antiplasmodial activity of stem bark and leaves of Alstonia boonei Materials and methods Identification and authentication of the plant used. Ex. J. Microbiol. Exp. Res. 2019; 7: 241–245. https://doi.org/10.15406/jmen.2019.07.00267. DOI: https://doi.org/10.15406/jmen.2019.07.00267

27 Otuu CA, Obiezue RNN, Eke SS, Usman-Yamman H, Ekuma IC, Udeh EO, Otuu AQA. Anti-malarial and Therapeutic Potential of Ethanolic Leaf and Root Extracts of Alstonia boonei against Plasmodium berghei Infection in Mice, Int. J. Med. Parasitol. Epidemiol. Sci. 2023; 4: 41–44. https://doi.org/10.34172/ ijmpes.3117. DOI: https://doi.org/10.34172/ijmpes.3117

28 Adotey JPK, Adukpo GE, Opoku YB, Armah FA. A Review of the Ethnobotany and Pharmacological Importance of Alstonia boonei De Wild (Apocynaceae), ISRN Pharmacol. 2012; 2012: 1–9. https://doi.org/10.5402/2012/587160. DOI: https://doi.org/10.5402/2012/587160

29 Hitz F, Grüninger O, Passecker A, Wyss M, Scheurer C, Wittlin S, Beck HP, Brancucci NMB, Voss TS. The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis, Commun. Biol. 2021: 4. https://doi.org/10.1038/s42003-021-01873-0. DOI: https://doi.org/10.1038/s42003-021-01873-0

30 Ruiz-Carrillo D, Lin J, El Sahili A, Wei M, Sze SK, Cheung PFC, Doerig C, Lescar J. The protein kinase CK2 catalytic domain from Plasmodium falciparum: Crystal structure, tyrosine kinase activity and inhibition, Sci. Rep. 2018; 8: 1–12. https://doi.org/10.1038/s41598-018-25738-5. DOI: https://doi.org/10.1038/s41598-018-25738-5

31 Dastidar EG, Dayer G, Holland ZM, Dorin-Semblat D, Claes A, Chêne A, Sharma A, Hamelin R, Moniatte M, Lopez-Rubio JJ, Scherf A, Doerig C. Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway, BMC Biol. 2012: 10. https://doi.org/10.1186/1741-7007-10-5. DOI: https://doi.org/10.1186/1741-7007-10-5

32 Tomaz KCP, Tavella TA, Borba, JVB, Salazar-alvarez LC, Levandoski JE, Mottin M, Sousa KP, Moreira-filho JT, Almeida VM, Clementino LC, Bourgard C, Massirer KB, Rafael M, Andrade CH, Sunnerhagen P, Bilsland E, Cassiano GC, Costa FTM. Plasmodium falciparum with potent in vitro activity, Sci. 2023: 1–15.

33 Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T, Kannan N, Doerig C, Chakrabarti R, Gygi SP, Chakrabarti D. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development, J. Prot Res. 2013; 12: 4028–4045. https://doi.org/10.1021/pr400394g. DOI: https://doi.org/10.1021/pr400394g

34 Tham WH, Lim NTY, Weiss GE, Lopaticki S, Ansell BRE, Bird M, Lucet I, Dorin-Semblat D, Doerig C, Gilson PR, Crabb BS, Cowman AF. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes, PLoS Pathog. 2015; 11: 1–22. https://doi.org/10.1371/journ al.ppat.1005343. DOI: https://doi.org/10.1371/journal.ppat.1005343

35 Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015; 12(6): 523-526. doi: 10.1038/nmeth.3393 DOI: https://doi.org/10.1038/nmeth.3393

36 Hu X, Yang Z, Liu W, Pan Z, Zhang X, Li M, Liu X, Zheng Q, Li Q. The Anti-tumor Effects of p-Coumaric Acid on Melanoma A375 and B16 Cells, Front. Oncol. 2020; 10: 558414. https://doi.org/10.3389/ FONC.2020.558414. DOI: https://doi.org/10.3389/fonc.2020.558414

37 Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent, Eur. J. Med. Chem. 2018; 155: 889–904. https://doi.org/10.1016/J.EJME CH.2018.06.053. DOI: https://doi.org/10.1016/j.ejmech.2018.06.053

38 Indradi RB, Muhaimin M, Barliana MI, Khatib A. Potential Plant-Based New Antiplasmodial Agent Used in Papua Island, Indonesia, Plants. 2023; 12: 1813 https://doi.org/10.3390/PLANTS12091813.

39 Whitty A, Zhong M, Viarengo L, Beglov D, Hall DR, Vajda SV. Quantifying the chameleonic properties of macrocycles and other high molecular weight drugs, Drug Discov. Today 2016; 21: 712. https://doi.org/10.1016/J.DRUDIS.2016.02.005. DOI: https://doi.org/10.1016/j.drudis.2016.02.005

40 Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Mon. für Chemie-Chem Mon., 2023; 154(7): 683-707. DOI: https://doi.org/10.1007/s00706-023-03076-1