Preliminary Evaluation of Repellent and Tsetse-cidal Potentials of Botanical Aromatic Essential Oils Against Glossina palpalis palpalis and Glossina morsitans submorsitans - Hand-in-cage Test

Main Article Content

Rolayo T. Emmanuel
Mabel U. Ogar
Friday M. Idowu
Lukman O. Omolade
Silifat O. Odeyemi
Khadijat Omotosho
Joy E. Benjamin
Rukayya G. Anchau
Alice Jonah

Abstract

Essential oils from a plethora of plants have proven effective in controlling arthropod vectors of medical, veterinary, and agricultural importance. Interruption of tsetse fly-human contact is crucial to the elimination of human African trypanosomiasis. Essential oils of Hyptis suaveolensis, Cymbopogon winterianus, and Rosmarinus officinalis were extracted by hydro-distillation. A preliminary laboratory-based hand-in-cage repellent and tsetse-cidal activity evaluation was conducted using 10%, 50%, and 100% of each essential oil against male and female, teneral and non-teneral Glossina palpalis palpalis and Glossina morsitans submorsitans, using isopropyl alcohol as a diluent. There was no significant difference between the mean number of tsetse flies landing on the isopropyl-treated arm across all tsetse fly groups (p = 0.8269). All concentrations of essential oil elicited an appreciable percentage repellency of 100%, with zero tsetse fly landings, except for 10% C. winterianus essential oil, which had an average of 2.67 landings by male G. m. submorsitans and 19.67% percentage repellency. There was no significant difference between protection times for all essential oils and concentrations used across sex groups, teneral status, and species of tsetse fly (p = 0.713). Conclusively, these aromatic plants could be regarded as potential repellents against tsetse flies and a promising, safe, and degradable tsetse fly repellent.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Preliminary Evaluation of Repellent and Tsetse-cidal Potentials of Botanical Aromatic Essential Oils Against Glossina palpalis palpalis and Glossina morsitans submorsitans - Hand-in-cage Test. (2025). Tropical Journal of Natural Product Research , 9(7), 3371-3376. https://doi.org/10.26538/tjnpr/v9i7.65

References

1.Emmanuel RT, Zongo K, Olusola OO. Toward the elimination of HAT in Nigeria: leaving no community behind. Int J Infect Dis. 2025; 152:107808. DOI: https://doi.org/10.1016/j.ijid.2025.107808

2.Okpalanwaka IF, Adaka IC, Uzor PF, Nwodo, NJ. Evaluation of In vivo and In vitro Screening of the Antitrypanosomal Properties of Methanol Leaf Extract and Fractions of Trichilia heudelotii Oliv. (Meliaceae). Trop J Nat Prod Res. 2020; 4(12): 1196–1200. DOI: https://doi.org/10.26538/tjnpr/v4i12.28

3.Alsan M. The Effect of the TseTse Fly on African Development. Am Econ Rev. 2015; 105(1): 382–410. DOI: https://doi.org/10.1257/aer.20130604

4.Batista JS, Moura GHF, Lopes FC, Rodrigues de Paiva KA, Júnior HN, Góis RC, Costa KMM, Coelho WAC, Freitas CIA. Risk factors for trypanosomiasis by Trypanosoma vivax in cattle raised in Rio Grande do Norte state. Arq Inst Biológico. 2018; 85: 1–6. DOI: https://doi.org/10.1590/1808-1657000232016

5.Ibikunle JA. Economic burden of a neglected tropical disease in Africa: The case study of human African trypanosomiasis. Acta Econ. 2020; 18(32): 37–58. DOI: https://doi.org/10.7251/ACE2032037A

6.Desquesnes M, Gonzatti M, Sazmand A, Thévenon S, Bossard G, Boulangé A, Gimonneau G, Truc P, Herder S, Ravel S, Sereno D, Jamonneau V, Jittapalapong S, Jacquiet P, Solano P, Berthier D. A review on the diagnosis of animal trypanosomoses. Parasit Vectors. 2022; 15(1): 64. DOI: https://doi.org/10.1186/s13071-022-05190-1

7.Franco JR, Cecchi G, Paone M, Diarra A, Grout L, Kadima Ebeja A, Simarro PP, Zhao W, Argaw D. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020. PLoS Negl Trop Dis. 2022; 16(1): e0010047. DOI: https://doi.org/10.1371/journal.pntd.0010047

8.Mesu VKBK, Kalonji WM, Bardonneau C, Valverde Mordt O, Ngolo Tete D, Blesson S, Simon F, Delhomme S, Bernhard S, Mahenzi Mbembo H, Mpia Moke C, Lumeya Vuvu S, Mudji E'kitiak J, Akwaso Masa F, Mukendi Ilunga M, Mpoyi Muamba Nzambi D, Mayala Malu T, Kapongo Tshilumbwa S, Botalema Bolengi F, Nkieri Matsho M, Lumbala C, Scherrer B, Strub-Wourgaft N, Tarral A. Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: a prospective, multicentre, open-label, cohort study. Lancet Glob Health. 2021; 9(7): e999–e1008. DOI: https://doi.org/10.1016/S2214-109X(21)00208-4

9.Barrett JC. Economic Issues in Trypanosomiasis Control. Natural Resources Institute: Chatham Maritime, Kent, UK; 1997.

10.Enwezor FNC, Emmanuel RT, Bizi RL, Olanrewaju TO, Kugama MA, Jarmai KY, Tijjani AA, Salawu MJ, Yarnap JE, Abubakar S, Wayo B, David K, Ezebuiro OGC, Olaleye OO, Onogwu, OJ, Yusuf RJ, Asongo IC, Ibrahim H, Abraham OA, Saidu MA, Abdullahi D, Uma S, Sabo H. Livestock trypanosomiasis, owners’ perception and search for human gambiense parasite in cattle and sheep in remote communities of Iseyin, Nigeria. Niger J Parasitol. 2021; 42(1): 147–157. DOI: https://doi.org/10.4314/njpar.v42i1.20

11.Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN. Measuring the costs of African animal trypanosomosis, the potential benefits of control and returns to research. Agric Syst. 1999; 59(1): 79–98. DOI: https://doi.org/10.1016/S0308-521X(98)00086-9

12.WHO. Vector-Borne Diseases. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases [Last accessed: 2/17/2023].

13.Luintel A, Lowe P, Cooper A, MacLeod A, Büscher P, Brooks T, Brown M. Case of Nigeria-Acquired Human African Trypanosomiasis in United Kingdom, 2016. Emerg Infect Dis. 2017; 23(7): 1225–1227. DOI: https://doi.org/10.3201/eid2307.170695

14.Franco JR, Cecchi G, Priotto G, Paone M, Kadima Ebeja A, Simarro PP, Diarra A, Sankara D, Zhao W, Dagne DA. Human African trypanosomiasis cases diagnosed in non-endemic countries (2011-2020). PLoS Negl Trop Dis. 2022; 16(11): e0010885. DOI: https://doi.org/10.1371/journal.pntd.0010885

15.Lee MY. Essential Oils as Repellents against Arthropods. BioMed Res Int. 2018; 2018: 6860271. DOI: https://doi.org/10.1155/2018/6860271

16.Courtin F, Camara M, Rayaisse JB, Kagbadouno M, Dama E, Camara O, Traoré IS, Rouamba J, Peylhard M, Somda MB, Leno M, Lehane MJ, Torr SJ, Solano P, Jamonneau V, Bucheton B. Reducing Human-Tsetse Contact Significantly Enhances the Efficacy of Sleeping Sickness Active Screening Campaigns: A Promising Result in the Context of Elimination. PLoS Negl Trop Dis. 2015; 9(8): e0003727. DOI: https://doi.org/10.1371/journal.pntd.0003727

17.Weeks J, Guiney P, Nikiforov A. Assessment of the environmental fate and ecotoxicity of N,N-diethyl-m-toluamide (DEET). Integr Environ Assess Manag. 2012; 8(1): 120–134. DOI: https://doi.org/10.1002/ieam.1246

18.Briassoulis G, Narlioglou M, Hatzis T. Toxic encephalopathy associated with use of DEET insect repellents: a case analysis of its toxicity in children. Hum Exp Toxicol. 2001; 20(1): 8–14. DOI: https://doi.org/10.1191/096032701676731093

19.Rasidah R, Maurizka IS, Aulianshah V, et al. Repellent Activity of Lotion of Essential Oils from Piper betle Linn and Cymbopogon nardus [L.]. Trop J Nat Prod Res. 2022; 6(12): 2020–2024.

20.Deletre E, Martin T, Duménil C, Chandre F. Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasit Vectors. 2019; 12(1): 89. DOI: https://doi.org/10.1186/s13071-019-3343-9

21.Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. Can Med Assoc J. 2003; 169(3): 209–212.

22.Elshafie HS, Camele I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. BioMed Res Int 2017; 2017: 9268468. DOI: https://doi.org/10.1155/2017/9268468

23.Luu-dam NA, Le CVC, Satyal P, Le TMH, Bui VH, Vo VH, Ngo GH, Bui TC, Nguyen HH, Setzer WN. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules. 2023; 28(5): 2361. DOI: https://doi.org/10.3390/molecules28052361

24.Abagli AZ, Alavo TBC, Avlessi F, Moudachirou M. Potential of the bush mint, Hyptis suaveolens essential oil for personal protection against mosquito biting. J Am Mosq Control Assoc. 2012; 28(1): 15–19. DOI: https://doi.org/10.2987/11-6181.1

25.Brügger BP, Martínez LC, Plata-Rueda A, Castro BMCE, Soares MA, Wilcken CF, Carvalho AG, Serrão JE, Zanuncio JC. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci Rep. 2019; 9(1): 8358. DOI: https://doi.org/10.1038/s41598-019-44709-y

26.Del Fabbro S, Nazzi F. Repellent effect of sweet basil compounds on Ixodes ricinus ticks. Exp Appl Acarol. 2008; 45(3): 219–228. DOI: https://doi.org/10.1007/s10493-008-9182-6

27.Khater HF, Geden CJ. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J Vector Ecol. 2019; 44(2): 256–263. DOI: https://doi.org/10.1111/jvec.12357

28.Moustafa MAM, Awad M, Amer A, Hassan NN, Ibrahim ES, Ali HM, Akrami M, Salem MZM. Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects. 2021; 12(8): 737. DOI: https://doi.org/10.3390/insects12080737

29.Showler AT. Botanically Based Repellent and Insecticidal Effects Against Horn Flies and Stable Flies (Diptera: Muscidae). J Integr Pest Manag. 2017; 8(1). DOI: https://doi.org/10.1093/jipm/pmx010

30.Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules. 2022; 27(24): 8999. DOI: https://doi.org/10.3390/molecules27248999

31.Tkachenko K, Varfolomeeva E. Prospects for the Use of Essential Oils as Repellants and/or Insecticides. Trop J Nat Prod Res. 2022; 6(6): 831–835.

32.El-akhal F, Alami A, Chahmi N, Mouatassem TF, El Fattouhi Y, Benboubker M, Amaiach R, Benrezzouk R, Taghzouti K, Talbi FZ, Lalami AE. Phytochemical Screening, Chemical Composition and Larvicidal Efficacy of Syzygium aromaticum Extracts and Essential Oil against Culex pipiens: Trop J Nat Prod Res. 2024; 8(1): 5962–5967. DOI: https://doi.org/10.26538/tjnpr/v8i1.35

33.Chibi A, Hassaine A. Essential Oil of Eucalyptus polybractea (L.): Chemical Composition, Antifungal, Insect Repellent and Insecticidal Activities: Trop J Nat Prod Res. 2023; 7(10): 4160–4165. DOI: https://doi.org/10.26538/tjnpr/v7i10.7

34.Clevenger JF. Apparatus for the determination of volatile oil. J Am Pharm Assoc. 1928; 17(4): 345–349. DOI: https://doi.org/10.1002/jps.3080170407

35.World Health Organization. Social Mobilization and Training Team. WHOPES : WHO Pesticide Evaluation Scheme. World Health Organization; 2001.

36.Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS. Regulation of essential oil production in plants. Plant Growth Regul. 2001; 34(1): 3–21. DOI: https://doi.org/10.1023/A:1013386921596

37.Francikowski J, Baran B, Cup M, Janiec J, Krzyżowski M. Commercially Available Essential Oil Formulas as Repellents Against the Stored-Product Pest Alphitobius diaperinus. Insects. 2019; 10(4): 96. DOI: https://doi.org/10.3390/insects10040096

38.Isman MB, Wilson JA, Bradbury R. Insecticidal Activities of Commercial Rosemary Oils (Rosmarinus officinalis) Against Larvae of Pseudaletia unipuncta. and Trichoplusia ni. in Relation to Their Chemical Compositions. Pharm Biol. 2008; 46(1–2): 82–87. DOI: https://doi.org/10.1080/13880200701734661

39.Krzyżowski M, Baran B, Łozowski B, Francikowski J. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. Insects. 2020; 11(6): 344. DOI: https://doi.org/10.3390/insects11060344

40.Govindarajan M, Sivakumar R. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitol Res. 2015;114(2):601–612. DOI: https://doi.org/10.1007/s00436-014-4222-0

41.Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006; 99(4): 478–490. DOI: https://doi.org/10.1007/s00436-006-0184-1

42.Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci. 2018; 4(4): FSO283. DOI: https://doi.org/10.4155/fsoa-2017-0124

43.Liu T, Sui X, Zhang R, Yang L, Zu Y, Zhang L, Zhang Y, Zhang Z. Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J Chromatogr A. 2011; 1218(47): 8480–8489. DOI: https://doi.org/10.1016/j.chroma.2011.09.073

44.Traboulsi AF, Taoubi K, el-Haj S, Bessiere JM, Rammal S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci. 2002; 58(5): 491–495. DOI: https://doi.org/10.1002/ps.486

45.Tak JH, Isman MB. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci Rep. 2015; 5: 12690. DOI: https://doi.org/10.1038/srep12690

46.Abbas KM, Al-Rahmanny AHJ. Toxic effects of various oil concentrations obtained from Rosmarinus officinalis on Musca domestica adults (Diptera: Muscidae) in different time periods. Casp J Environ Sci. 2022; 20(2): 401–405.

47.Elmhalli F, Garboui SS, Borg-Karlson AK, Mozūraitis R, Baldauf SL, Grandi G. The repellency and toxicity effects of essential oils from the Libyan plants Salvadora persica and Rosmarinus officinalis against nymphs of Ixodes ricinus. Exp Appl Acarol. 2019; 77(4): 585–599. DOI: https://doi.org/10.1007/s10493-019-00373-5

48.Chahda JS, Soni N, Sun JS, Ebrahim SAM, Weiss BL, Carlson JR. The molecular and cellular basis of olfactory response to tsetse fly attractants. PLoS Genet 2019; 15(3): e1008005. DOI: https://doi.org/10.1371/journal.pgen.1008005

49.Liu R, Lehane S, He X, Lehane M, Hertz-Fowler C, Berriman M, Pickett JA, Field LM, Zhou J. Characterisations of odorant-binding proteins in the tsetse fly Glossina morsitans morsitans. Cell Mol Life Sci. 2010; 67(6): 919–929. DOI: https://doi.org/10.1007/s00018-009-0221-1

50.Sharififard M, Safdari F, Siahpoush A, Kassiri H. Evaluation of Some Plant Essential Oils against the Brown-Banded Cockroach, Supella longipalpa (Blattaria: Ectobiidae): A Mechanical Vector of Human Pathogens. J Arthropod-Borne Dis. 2016; 10(4): 528–537.

51.Vale GA, Hall DR, Gough AJE. The olfactory responses of tsetse flies, Glossina spp. (Diptera: Glossinidae), to phenols and urine in the field. Bull Entomol Res. 1988; 78(2): 293–300. DOI: https://doi.org/10.1017/S0007485300013055

52.Nwaya E, Oparaocha ET, Okoroafo IE, Sule OC. Preliminary Study of the Mosquito Repellent and Adulticidal Effects of Volatile Oils of Lemon Grass (Cymbopogon winterianus) in Imo State, Southeast, Nigeria. Int J Med Sci Clin Invent. 2020; 7(1): 4726–4734. DOI: https://doi.org/10.18535/ijmsci/v7i01.10

53.Syed Z, Leal WS. Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci. 2008; 105(36): 13598–13603. DOI: https://doi.org/10.1073/pnas.0805312105

54.Duniya SV, Bala CJ, Sokoato MI. Insecticidal and mosquito repellency property of essential oil from Hyptis suaveolens leaves. Open Access J Sci. 2022; 5(1): 77–83. DOI: https://doi.org/10.15406/oajs.2022.05.00179

55.Wangrawa DW, Badolo A, Guelbéogo WM, Wangrawa, D.W., Badolo A, Guelbéogo WM, Kiendrébéogo M, Nébié R, Sagnon N, Sanon A. Biological activities of four essential oils against Anopheles gambiae in Burkina Faso and their in vitro inhibition of acetylcholinesterase. Int J Biol Chem Sci. 2015; 9(2): 793–802. DOI: https://doi.org/10.4314/ijbcs.v9i2.19

56.Azevedo NR, Campos IF, Ferreira HD, Portes TA, Santos SC, Seraphin JC, Paula JR, Ferri PH. Chemical variability in the essential oil of Hyptis suaveolens. Phytochemistry. 2001; 57(5): 733–736. DOI: https://doi.org/10.1016/S0031-9422(01)00128-5

57.Kumar P, Mishra S, Malik A, Satya S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol Res. 2013; 112(1): 69–76. DOI: https://doi.org/10.1007/s00436-012-3105-5

58.Shahina Z, Al Homsi R, Price JDW, Whiteway M, Sultana T, Dahms TES. Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PloS One. 2022; 17(11): e0277097. DOI: https://doi.org/10.1371/journal.pone.0277097

59.Klocke JA, Darlington MV, Balandrin MF. 1,8-Cineole (Eucalyptol), a mosquito feeding and ovipositional repellent from volatile oil of Hemizonia fitchii (Asteraceae). J Chem Ecol. 1987; 13(12): 2131–2141. DOI: https://doi.org/10.1007/BF01012562

60.Baghouz A, Bouchelta Y, Es-safi I, Bourhia M, Abdelfattah EM, Alarfaj AA, Hirad AH, Nafidi H, Guemmouh R. Identification of Volatile Compounds and Insecticidal Activity of Essential Oils from Origanum compactum Benth. and Rosmarinus officinalis L. against Callosobruchus maculatus (Fab.). J Chem. 2022; 2022: e7840409. DOI: https://doi.org/10.1155/2022/7840409

61.Mengiste B, Dires K, Lulekal E, Arayaselassie M, Zenebe T, Feleke G, Makonnen E, Mekonnen A. Acute skin irritation, acute and sub-acute oral toxicity studies of Rosmarinus officinalis essential oils in mice and rabbit. Afr J Pharm Pharmacol. 2018; 12(26): 389–396. DOI: https://doi.org/10.5897/AJPP2018.4957

62.Montenegro L, Pasquinucci L, Zappalà A, Chiechio S, Turnaturi R, Parenti C. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In vivo Topical Activity from Gel Vehicles. Pharmaceutics. 2017; 9(4): 48. DOI: https://doi.org/10.3390/pharmaceutics9040048