A Comparative Study on the Physicochemical Characterization of Chitosan Obtained from Seafood in Uyo Metropolis, Nigeria

Main Article Content

Ugochi E. Ewii
Emmanuel O. Olorunsola
Adaeze L. Onugwu
Ojochide M. Ameh
Euphemia N. Eke
Callistus I. Iheme
Anthony A. Attama
Chioma Anyiam
Toochukwu E. Ogbulie

Abstract

One biopolymer that stands out for its uses in biotechnology and pharmaceuticals is chitosan, whose functionality is often influenced by the source of the material. The primary focus of this study was to derive and analyze chitosan from three different types of seafood shells: crab (Callinectes amnicola), periwinkle (Tympanotonus fuscatus var. radula), and snail (Archachatina marginata) collected from Uyo Metropolis, Akwa Ibom State, Nigeria. Chitin was first extracted from the exoskeletons of these organisms and subsequently converted into chitosan using the chemical method. The derived chitosan samples were characterized and compared with commercial chitosan. Yield analysis revealed values of 29.80% for crab, 16.31% for periwinkle, and 39.80% for snail. All samples had a degree of deacetylation above 50%. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed consistent features, including O-H stretching vibrations, N-H amine groups, alkyl peaks, and glycosidic bonds characteristic of chitosan. Despite chemical similarities, physical differences were observed. Snail chitosan had high thermal stability but low crystallinity, whereas crab and periwinkle chitosan samples showed moderate crystallinity. The commercial chitosan was highly crystalline. Ash content was highest in periwinkle-derived chitosan (10.46%). While all chitosan samples demonstrated comparable solubility, viscosity varied. These findings indicate that while the chitosan samples share core chemical structures, source-specific differences in physical properties may influence functional applications. The study concludes that seafood waste provides a viable source of functional chitosan, with varying characteristics influencing their potential uses, especially in pharmaceutical science and technology.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Adaeze L. Onugwu, Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria

Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

How to Cite

A Comparative Study on the Physicochemical Characterization of Chitosan Obtained from Seafood in Uyo Metropolis, Nigeria. (2025). Tropical Journal of Natural Product Research , 9(7), 3311 – 3327. https://doi.org/10.26538/tjnpr/v9i7.60

References

1.Okogwu OI, Elebe FA, Nwonumara GN. Fish types, breeding grounds, and migratory routes in Akwa Ibom State, Nigeria. Zoologist (Niger). 2022; 19:38–45. Doi: 10.4314/tzool. v19i1.6 DOI: https://doi.org/10.4314/tzool.v19i1.6

2.Nikitenko O. How to clean crab shells for crafts: a step-by-step guide. Global Seafoods North America [Internet]. 2023 [cited 2024 Nov 13]. Available from: https://globalseafoods.com/a/s/blogs/news/how-to-clean-crab-shells-for-crafts-a-step-by-step-guide.

3.Purcell J. Easy homemade shrimp stock. Savoring Today [Internet]. 2022 [cited 2024 Nov 13]. Available from: https://savoringtoday.com/emerils-rich-shrimp-stock-getting-ready-for-cajun-shrimp-stew/

4.Snail Shells 24. The Culinary Club [Internet]. 2023 [cited 2024 Nov 13]. Available from: https://culinaryclub.com.au/product/snail-shells-24/

5.Mei Z, Kuzhir P, Godeau G. Update on chitin and chitosan from insects: Sources, production, characterization, and biomedical applications. Biomimetics. 2024; 9(5):297. Doi: 10.3390/biomimetics9050297 DOI: https://doi.org/10.3390/biomimetics9050297

6.Al Shaqsi NHK, Al Hoqani HAS, Hossain MA, Al Sibani MA. Optimization of the demineralization process for the extraction of chitin from Omani Portunidae segnis. Biochem Biophys Rep. 2020; 23: 100779. Doi.org/10.1016/j.bbrep.2020.100779. DOI: https://doi.org/10.1016/j.bbrep.2020.100779

7.Kadak AE, Küçükgülmez A, Çelik M. Preparation and characterization of crayfish (Astacus leptodactylus) chitosan with different deacetylation degrees. Iran J Biotechnol. 2023; 21(2): e3253. Doi: 10.30498/ijb.2023.323958.3253

8.Bachheti RK, Bachheti A, Husen A. Chitin-based nanoparticles for the agricultural sectors, Springer Nature Singapore, 2025. Doi: 10.1007/978-981-96-0920-8 DOI: https://doi.org/10.1007/978-981-96-0920-8

9.Knorr D. Food processing of chitin and chitosan: From waste to opportunities. J Food Eng. 2025; 400:112634. Doi: 10.1016/j.jfoodeng.2025.112634. DOI: https://doi.org/10.1016/j.jfoodeng.2025.112634

10.Piekarska K, Sikora M, Owczarek M, Jóźwik-Pruska J, Wiśniewska-Wrona M. Chitin and chitosan as polymers of the future—obtaining, modification, life cycle assessment and main directions of application. Polymers. 2023; 15(4):793. Doi:10.3390/polym15040793. DOI: https://doi.org/10.3390/polym15040793

11.Dong Q, Qiu W, Feng Y, Jin Y, Deng S, Tao N, Jin Y. Proteases and microwave treatment on the quality of chitin and chitosan produced from white shrimp (Penaeus vannamei). eFood. 2023; 4: efd2.73. Doi:10.1002/efd2.73. DOI: https://doi.org/10.1002/efd2.73

12.Suryawanshi N, Ayothiraman S, Eswari JS. Ultrasonication mode for the expedition of extraction process of chitin from the maritime shrimp shell waste. Indian J Biochem Biophys. 2020; 57(4):431-8. Doi:10.56042/ijbb.v57i4.29626. DOI: https://doi.org/10.56042/ijbb.v57i4.29626

13.Raghatate A, Cortes FD, Meraz OD, Ahmadi K, Chaudhari NM, Solanki D, Puthirath AB, Castaneda N, Ajayan PM, Ramirez JMH, Balan V, Robles FC. Sustainable biocomposites for structural applications with environmental affinity. ACS Appl Mater Interfaces. 2022; 14:17837 – 17848. Doi: 10.1021/acsami.2c02073. DOI: https://doi.org/10.1021/acsami.2c02073

14.Sebastian J, Rouissi T, Brar SK, Hegde K, Verma M. Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr Polym. 2019; 219:431-440. Doi: 10.1016/j.carbpol.2019.05.047. DOI: https://doi.org/10.1016/j.carbpol.2019.05.047

15.Jalali N, Trujillo-de Santiago G, Motevalian M, Karimi MY, Chauhan NPS, Habibi Y, Mozafari M. Chitosan-functionalized poly(lactide-co-glycolide) nanoparticles: breaking through the brain’s tight security gateway. Bioinspir Biomim Nanobiomater. 2016; 5:74-84. Doi:10.1680/jbibn.15.00016. DOI: https://doi.org/10.1680/jbibn.15.00016

16.Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N. Chitosan: An overview of its properties and applications. Polymers. 2021; 13(19):3256. Doi:10.3390/polym13193256. DOI: https://doi.org/10.3390/polym13193256

17.Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, processing and modification techniques. Gels. 2022; 8(7):393. Doi:10.3390/gels8070393. DOI: https://doi.org/10.3390/gels8070393

18.Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers. 2023; 15(13):2867. Doi:10.3390/polym15132867. DOI: https://doi.org/10.3390/polym15132867

19.Huq T, Khan A, Brown D, Dhayagude N, He Z, Ni Y. Sources, production and commercial applications of fungal chitosan: A review. J Bioresour Bioprod. 2022; 7:85-98. Doi: 10.1016/j.jobab.2022.01.002. DOI: https://doi.org/10.1016/j.jobab.2022.01.002

20.Lv SH. High-performance superplasticizer based on chitosan. In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier. 2016; 131-150. Doi:10.1016/b978-0-08-100214-8.00007-5. Accessed May 11, 2025

21.Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016; 85:467-475. Doi: 10.1016/j.ijbiomac.2016.01.022. DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.022

22.Basera, P, Lavania M, Shinde O, Sarkar SK, Lal B. An operative laboratory investigation of bioconversion route from waste coal to natural energy. Ann Microbiol. 2022; 72:13. Doi:10.1186/s13213-021-01659-z DOI: https://doi.org/10.1186/s13213-021-01659-z

23.Pakizeh M, Moradi A, Ghassemi T. Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur Polym J. 2021; 159: 110709. Doi: 10.1016/j.eurpolymj.2021.110709. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110709

24.Alagiri A, Parthiban J, Ashok A, Velayutham M. Extraction, characterization and antibacterial activity of chitosan from mud crab Scylla serrata. Uttar Pradesh J Zool. 2025; 46 (1): 140–154. Doi: 10.56557/upjoz/2025/v46i14750. DOI: https://doi.org/10.56557/upjoz/2025/v46i14750

25.Adekanmi AA, Adekanmi UT, Adekanmi AS, Ahmad IK, Emmanuel OO. Production and characterization of chitosan from the chitin of snail shells by sequential modification process. Afr J Biotechnol. 2023; 22:39-53. Doi:10.5897/ajb2020.17135. DOI: https://doi.org/10.5897/AJB2020.17135

26.Ochi DO, Babayemi AK. The physico-chemical properties and sorption potentials of snail shell particulates, chitin, chitosan, and oxalic acid modified chitosan from Achatina fulica shell. Eur J Sustain Dev Res. 2023; 7(4): em0232. Doi: 10.29333/ejosdr/13476. DOI: https://doi.org/10.29333/ejosdr/13476

27.Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr Polym Technol Appl. 2021; 2:100036. Doi: 10.1016/j.carpta.2021.100036. DOI: https://doi.org/10.1016/j.carpta.2021.100036

28.Eke-Ejiofor K, Moses R. Preparation and evaluation of food grade preservatives from shells of locally available shellfishes. Int J Biotechnol Food Sci. 2019; 7:23-29. Doi:10.33495/ijbfs_v7i2.19.103. DOI: https://doi.org/10.33495/ijbfs_v7i2.19.103

29.Czechowska-Biskup R, Jarosińska D, Rokita B, Ulański P, Rosiak J. Determination of degree of deacetylation of chitosan – comparison of methods. Prog Chem Appl Chitin Deriv. 2012; 17: 5–20.

30.Medeiros PM. Gas Chromatography–Mass Spectrometry (GC–MS). In: Encyclopedia of Earth Sciences Series. Springer International Publishing; 2018. P. 530-535. Doi:10.1007/978-3-319-39312-4_159. Accessed May 11, 2025. DOI: https://doi.org/10.1007/978-3-319-39312-4_159

31.Atuchukwu E, Adedokun M, Emeje M. Synthesis, characterization, and functional properties of a novel sodium carboxymethyl starch obtained from matured seeds of Brachystegia eurycoma. Egypt Pharm J. 2021; 20:145-156. Doi: 10.4103/epj.epj_61_20. DOI: https://doi.org/10.4103/epj.epj_61_20

32.Lam M, Schwarz C, Sharma R, Donnelly J. An introduction to scanning electron microscopy and science communication skills for undergraduate chemistry students. J Chem Educ. 2023; 100:2802-2808. Doi: 10.1021/acs.jchemed.3c00076. DOI: https://doi.org/10.1021/acs.jchemed.3c00076

33.Earnest C, Jones J, Dunn A. On the study of thermal transitions in selected n-paraffins using differential scanning calorimetry. Thermo. 2022; 2:302-311. Doi:10.3390/thermo2030021. DOI: https://doi.org/10.3390/thermo2030021

34.Lam ILJ, Mohd Affandy MA, Aqilah NMN, Vonnie JM, Felicia WXL, Rovina K. Physicochemical characterization and antimicrobial analysis of vegetal chitosan extracted from distinct forest fungi species. Polymers. 2023; 15(10):2328. Doi:10.3390/polym15102328. DOI: https://doi.org/10.3390/polym15102328

35.Orji EA, Ejere VC, Orji CT, Anorue EC, Ossai NI, Ojua EO, Nwani CD and Eyo JE. Phytochemical Profiling and GC-MS Analysis of Lantana camara Leaf Extract. Trop J Nat Prod Res. 2024; 8(7):7920-7927. Doi: 10.26538/tjnpr/v8i7.40 DOI: https://doi.org/10.26538/tjnpr/v8i7.40

36.Thomas S, Pius A, Gopi S, eds. Handbook of chitin and chitosan: Volume 3: Chitin- and Chitosan-based Polymer Materials for Various Applications, Susan Dennis, Elsevier, 2020.

37.Koumbogle K, Gosselin R, Gitzhofer F, Abatzoglou N. Moisture behavior of pharmaceutical powder during the tableting process. Pharmaceutics. 2023; 15(6):1652. Doi:10.3390/pharmaceutics15061652. DOI: https://doi.org/10.3390/pharmaceutics15061652

38.Sreeja SJ, Tamilarutselvi K, Tamilselvi A, Sarojini KP, Jasmin K, Malini MM. Production of chitin and conversion into chitosan from crab (Scylla tranquebarica) shells and evaluation of its antioxidant activities. Biomass Conv Biorefinery. 2023; 14:17193-17199. Doi:10.1007/s13399-023-03776-y. DOI: https://doi.org/10.1007/s13399-023-03776-y

39.Mulatsari E, Mumpuni E, Qodriah R, Budiati A, Gunawan J, Soeroso MH, Serlahwaty D. Synthesis and characterization of chitosan from crab shell waste and its applications as edible coating. Int J Appl Pharm. 2022; 13–17. Doi:10.22159/ijap. 2022.v14s3.02.

40.Ningtyas K, Muslihudin M, Elsyana V. Isolation and characterization of chitosan from varied crab shell. Int Conf Agric Appl Sci. 2021; Doi:10.25181/icoaas.v1i1.2008. DOI: https://doi.org/10.25181/icoaas.v1i1.2008

41.Esenowo I, Akpan A, Egwali E, Akpabio E. The abundance and composition of crabs (Decapoda) in Uta Ewa brackish water, Akwa Ibom State, South-South, Nigeria. J Appl Sci Environ Manag. 2017; 20:919. Doi:10.4314/jasem.v20i4.3. DOI: https://doi.org/10.4314/jasem.v20i4.3

42.Olaosebikan AO, Kehinde OA, Tolulase OA, Victor EB. Extraction and characterization of chitin and chitosan from Callinectes amnicola and Penaeus notialis shell wastes. J Chem Eng Mater Sci. 2021; 12: 1–30. Doi: 10.5897/jcems2020.0353. DOI: https://doi.org/10.5897/JCEMS2020.0353

43.Elegbede IO, Fashina-Bombata HA. Proximate and mineral compositions of common crab species (Callinectes pallidus and Cardisoma armatum) of Badagry Creek, Nigeria. Poult Fish Wildl Sci. 2023; 2: 110. Doi: 10.4172/pfw.1000110.

44.Onosakponome I, Awhin P, Okwuenu P, Oparaji E, Odesa G, Isoje A, Onyebuchi S, Chilaka F. Extraction and FTIR spectra of chitin and chitosan produced from periwinkle (Tympanotonos fuscatus) under differential decolorization conditions. Trop J Chem. 2025; 1(1). Doi:10.71148/tjoc/v1i1.7 DOI: https://doi.org/10.71148/tjoc/v1i1.7

45.Agoha EEC. Biomaterials from periwinkle shells: composition and functional properties. In: Magjarevic R, Nagel JH, editors. World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proc. 2007; 14:3271–3274. Doi:10.1007/978-3-540-36841-0_826 DOI: https://doi.org/10.1007/978-3-540-36841-0_826

46.Amor IB, Hemmami H, Laouini SE, Abdelaziz AG, Barhoum A. Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Conv Bioref. 2024; 14:16245–16255. Doi:10.1007/s13399-023-03741-9 DOI: https://doi.org/10.1007/s13399-023-03741-9

47.Novikov VY, Derkach SR, Konovalova IN, Dolgopyatova NV, Kuchina YA. Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers. 2023; 15:1729. Doi:10.3390/polym15071729 DOI: https://doi.org/10.3390/polym15071729

48.Majekodunmi SO, Olorunsola EO, Uzoaganobi CC. Comparative physicochemical characterization of chitosan from shells of two bivalved mollusks from two different continents. Am J Polym Sci. 2017; 7(1):15–22. Doi: 10.5923/j.ajps.20170701.03

49.Pissia MΑ, Matsakidou A, Kiosseoglou V. Raw materials from snails for food preparation. Futur Foods. 2021; 3:100034. Doi: 10.1016/j.fufo.2021.100034. DOI: https://doi.org/10.1016/j.fufo.2021.100034

50.Egbeneje VO, Swand PI, Akpehe AA, Enyi SO, Ofukwu SE. Extraction and characterization of chitosan from giant African land snail’s shells. Int J Pharmacogn. 2024;11(10):551–557. Doi: 10.13040/IJPSR.0975-8232.IJP.11(10).551-57 DOI: https://doi.org/10.13040/IJPSR.0975-8232.IJP.11(10).551-57

51.Atef B, Ishak RAH, Badawy SS, Osman R. Exploring the potential of oleic acid in nanotechnology-mediated dermal drug delivery: An up-to-date review. J Drug Deliv Sci Technol. 2022; 67:103032. Doi: 10.1016/j.jddst.2021.103032 DOI: https://doi.org/10.1016/j.jddst.2021.103032

52.Celestine UA, Christopher GB, Innocent OO. Phytochemical profile of stem bark extracts of Khaya senegalensis by gas chromatography-mass spectrometry (GC-MS) analysis. J Pharmacogn Phytother. 2017; 9:35–43. Doi:10.5897/jpp2016.0416 DOI: https://doi.org/10.5897/JPP2016.0416

53.Marinescu M, Popa C-V. Pyridine compounds with antimicrobial and antiviral activities. Int J Mol Sci. 2022; 23:5659. Doi:10.3390/ijms23105659 DOI: https://doi.org/10.3390/ijms23105659

54.Emeka N, Onukwuli O, Ekebafe L. Preparation and characterization of periwinkle shell activated carbon. Niger Res Chem Sci. 2021; 8 (1): 244 - 254

55.Anggraeni AS, Jayanegara A, Laconi EB, Kumalasari NR, Windarsih A, Sofyan A. Physicochemical and antibacterial properties of chitosan extracted from swimming crab shells and wooden grasshoppers using different extraction methods. Food Res. 2024;8(3):439–450. Doi:10.26656/fr.2017.8(3).313. DOI: https://doi.org/10.26656/fr.2017.8(3).313

56.Roy N, Das R, Paira R, Paira P. Different routes for the construction of biologically active diversely functionalized bicyclo [3.3.1] nonanes: an exploration of new perspectives for anticancer chemotherapeutics. RSC Adv. 2023; 13:22389–22480. Doi:10.1039/d3ra02003g. DOI: https://doi.org/10.1039/D3RA02003G

57.Awuchi CG, Chukwu CN, Iyiola AO, Noreen S, Morya S, Adeleye AO, Twinomuhwezi H, Leicht K, Mitaki NB, Okpala COR. Bioactive compounds and therapeutics from fish: revisiting their suitability in functional foods to enhance human wellbeing. Biomed Res Int. 2022; 2022:3661866. Doi:10.1155/2022/3661866. DOI: https://doi.org/10.1155/2022/3661866

58.Ghannam HE, Talab AS, Dolgano NV, Husse AMS, Abdelmagui NM. Characterization of chitosan extracted from different crustacean shell wastes. J Appl Sci. 2016; 16:454–461. Doi:10.3923/jas.2016.454.461. DOI: https://doi.org/10.3923/jas.2016.454.461

59.Tertsegha S, Akubor PI, Iordekighir AA, Christopher K, Okike OO. Extraction and characterization of chitosan from snail shells (Achatina fulica). J Food Qual Hazards Control. 2024;11(3):186–189. Doi:10.18502/jfqhc.11.3.16590 DOI: https://doi.org/10.18502/jfqhc.11.3.16590

60.Saberian M, Roudsari RS, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon. 2024;10(11): e32040. Doi: 10.1016/j.heliyon. 2024.e32040 DOI: https://doi.org/10.1016/j.heliyon.2024.e32040

61.Renuka V, Ravishankar CNR, Elavarasan K, Zynudheen AA, Joseph TC. Production and characterization of chitosan from shrimp shell waste of Parapeneopsis stylifera. Int J Curr Microbiol Appl Sci. 2019; 8:2076-2083. Doi:10.20546/ijcmas.2019.811.240 DOI: https://doi.org/10.20546/ijcmas.2019.811.240

62.Hao G, Hu Y, Shi L, Chen J, Cui A, Weng W, Osako K. Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci Rep. 2021; 11:81318. Doi:10.1038/s41598-021-81318-0 DOI: https://doi.org/10.1038/s41598-021-81318-0

63.Oyawoye MR, Momoh OR, Sani YM, Akande HF. Characterization of periwinkle shell from Nembe, Rivers State, Nigeria. Niger Res J Eng Environ Sci. 2019;4(2):850–856.

64.Viljoen JM, Steenekamp JH, Marais AF, Kotzé AF. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev Ind Pharm. 2014; 40(6): 730–742. Doi: 10.3109/03639045.2013.782501. DOI: https://doi.org/10.3109/03639045.2013.782501

65.Hasan S, Boddu VM, Viswanath DS, Ghosh TK. Chitosan characterization. In: Engineering Materials and Processes. Cham: Springer International Publishing; 2022; 51–78. Doi:10.1007/978-3-031-01229-7_3. Accessed May 11, 2025. DOI: https://doi.org/10.1007/978-3-031-01229-7_3

66.Chaiwong N, Leelapornpisid P, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sakdatorn V, Leksawasdi N, Phimolsiripol Y. Antioxidant and moisturizing properties of carboxymethyl chitosan with different molecular weights. Polymers. 2020; 12:1445. Doi:10.3390/polym12071445 DOI: https://doi.org/10.3390/polym12071445

67.Ahing FA, Wid N. Optimization of shrimp shell waste deacetylation for chitosan production. Int J Adv Appl Sci. 2016; 3:31–36. Doi:10.21833/ijaas.2016.10.006 DOI: https://doi.org/10.21833/ijaas.2016.10.006

68.Metin C, Alparslan Y, Baygar T, Baygar T. Physicochemical, microstructural and thermal characterization of chitosan from blue crab shell waste and its bioactivity characteristics. J Polym Environ. 2019; 27:2552–2561. Doi:10.1007/s10924-019-01539-3 DOI: https://doi.org/10.1007/s10924-019-01539-3

69.Hegde S, Selvaraj S. Chitosan: an in-depth analysis of its extraction, applications, constraints, and future prospects. J Microbiol Biotechnol Food Sci. 2024; e10563. Doi:10.55251/jmbfs.10563. DOI: https://doi.org/10.55251/jmbfs.10563

70.Fernandez-Kim SO. Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols [master’s thesis]. Louisiana: Louisiana State University Libraries; 2004. Doi:10.31390/gradschool_theses.1338. Accessed May 11, 2025 DOI: https://doi.org/10.31390/gradschool_theses.1338

71.Tamzi NN, Faisal M, Sultana T, Ghosh SK. Extraction and properties evaluation of chitin and chitosan prepared from different crustacean waste. Bangladesh J Vet Anim Sci. 2020; 8(2): 69–76. Doi:10.60015/bjvas/v08i2a8 DOI: https://doi.org/10.60015/bjvas/V08I2A8

72.Roy JC, Salaün F, Giraud S, Ferri A, Chen G, Guan J. Solubility of chitin: solvents, solution behaviors and their related mechanisms. In: Solubility of Polysaccharides. InTech; 2017. Doi:10.5772/intechopen.71385. Accessed May 11, 2025 DOI: https://doi.org/10.5772/intechopen.71385

73.Tamura H, Furuike T. Chitin and chitosan. In: Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014; 1–4. Doi:10.1007/978-3-642-36199-9_322-1. Accessed May 11, 2025. DOI: https://doi.org/10.1007/978-3-642-36199-9_322-1