Safety Assessment of the Crude Methanol Extract of Sarcocephalus latifolius (Sm.) E. A. Bruce Fruits in Drosophila melanogaster
Main Article Content
Abstract
Healing with medicinal plants is as old as mankind itself. The fruit of Sarcocephalus latifolius (SL) is used in folk medicine to treat tumours and other related diseases. This study aimed to assess the safety of the crude methanol extract of Sarcocephalus latifolius (Sm.) E.A. Bruce fruits (MSL) in Drosophila melanogaster. The study was performed in the in vivo mode. Adult Wild type (Harwich strain) flies were divided into six groups of 50 flies each. Group 1 (control, vehicle only), groups 2 - 6 (treated with 0.1, 0.2, 0.5, 1, and 10 mg/kg MSL diet, at the stated doses, respectively). The flies were exposed to the various treatments for 7 days, initially to assess survival status, and later to 28 days. Thereafter, the behavioural, inflammatory, oxidative stress, antioxidant status, eclosion rate and biochemical parameters were assessed using standard methods. The results showed that MSL improved the survival rates of D. melanogaster, with no toxic effect on the eclosion rate and locomotive capacity. In vivo, MSL exhibited a dose-dependent reduction in Nitric oxide (NO) levels (55%), depletion of LPO and H2O2 levels across all the groups compared to the control. MSL did not cause any form of alteration in the antioxidant defense system (GST, CAT and TSH and GSH levels) and maintained GST activity while improving GSH and total thiol levels. In conclusion, MSL possesses anti-inflammatory, and antioxidative properties, and is safe in D. melanogaster. These observations validate the safety of the fruits of Sarcocephalus latifolius used in traditional medicine.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Imah-Harry JU, Omoleye IS, Chidume CC, Ajayi KO. Comparative Study of the Cytotoxicity, Antioxidant, and Antimicrobial Profile of Selected Medicinal Plants Used as Food Flavours in Eastern Nigeria. Funct Food J. 2025, 6(1):1168-1182. https://ffnan.org/journals/journal-11
2.Ifeoma MI, Ugochukwu CU, Chioma JO, Ikechukwu J, Chidinma P. Phytochemical, Antimicrobial and Heavy Metals Analyses of Sarcocephalus latifolius Leaf Extract. Appl Chem. 2018; 1:13. DOI:10.31058/j.ac.2018.11002. DOI: https://doi.org/10.31058/j.ac.2018.11002
3.Obika OI, Oyawaluja AA, Odukoya OA, Obika-Ndiri NA, Oiseoghaede JO. Evaluation of Sarcocephalus latifolius Afzel. ex R.Br. Rubiaceae on Reduction of Creatinine Level and Its Antioxidant In-Vitro. J Fundam Appl Pharm Sci. 2024; 5(1):21-34. DOI. 10.18196/jfaps. v5i1.22237
4.World Health Organization. Traditional Medicine Strategy 2002–2005, World Health Organization; 2005; Geneva, Switzerland.
5.Ladipo MK, Doherty VF, Kanife UC. Heavy Metal Analysis and Phytochemical Screening of Two Indigenous Species (Zingiber officinale and Centrosema pubescens) from Nigeria. Int J Curr Res. 2011; 33(4):095-099.
6.Alsiddig O, Sufyan A, Mai O, Saga Y, Yousra B, Thoyba E, Afnan A. Antimicrobial Activity and Elemental Composition of Sarcocephalus latifolius Fruits: An Ethnopharmacological Based Evaluation. J Adv Microbiol. 2017; 3(2):1-5. DOI: https://doi.org/10.9734/JAMB/2017/33180
7.Guimaraes AL, Oliveira AP, Almeida JR. Challenges to Implementation of Herbal Medicine in Health System in Completeness and Health: Epistemology, Politics and Practices of Care, A. F. Barreto, (Eds), University of Education. UFPE, Recife, Brazil. 2011; 97–107p.
8.Dibua UM, Kalu A, Attama AA, Esimone CO, Eyo JE. In vivo and In vitro Evaluation of the Inhibitory Effect of Some Medicinal Plant Extracts on Haemozoin Concentration. Anim Res Int. 2013; 10(2):1699-1712.
9.Imah-Harry JU and Olorunsogo OO. Effects of Different Solvent Fractions of Sarcocephalus latifolius (Smith) Bruce in Rat Liver Mitochondrial Membrane Permeability Transition (mPT) Pore (In Vitro). Trop J Nat Prod Res. 2024; 8(8): 8224-8232. DOI: https://doi.org/10.26538/tjnpr/v8i8.45
10.Abbah JS, Amos B, Chindo N, Vongtau HO. Pharmacological Evidence Favouring the use of Nauclea Latifolia in Malaria Ethnopharmacy: Effects Against Nociception, Inflammation and Pyrexiain Rats and Mice. J Ethnopharmacol. 2010; 127:85-90. DOI: https://doi.org/10.1016/j.jep.2009.09.045
11.Chinedu I, Fredrick A, Nnabuife CC, Mbah CJ, Onyekaba TC. Antimicrobial Properties of the Methanolic Extract of the Leaves of Nauclea latifolia. Int J Drug Res Technol. 2012; 2(1):45-55.
12.Charles-Okhe O, Odeniyi MA, Fakeye TO, Ogbole OO, Akinleye TE, Adeniji AJ. Cytotoxic Activity of Crude Extracts and Fractions of African Peach (Nauclea latifolia Smith) Stem Bark on Two Cancer Cell Lines. Phytomed Plus. 2022; 2(1):100212. https://doi.org/10.1016/j.phyplu.2 021.100212. DOI: https://doi.org/10.1016/j.phyplu.2021.100212
13.Da FL, Tindano B, Zabre G, Sakira K, Bayala B, Belemtougri RG, Horlait P. Effects of Sarcocephalus latifolius Fruits Extract on Paracetamol-Induced Liver Damage in Wistar Rats. Pharmacol Pharm. 2023; 14(04):112–122. https://doi.org/10.4236/pp.2023.144009. DOI: https://doi.org/10.4236/pp.2023.144009
14.Ajayi EIO, Adeola AO, Ajayi OB. Preliminary Phytochemical Screening and Antimicrobial Activities of Fruit, Fruit Skin, Stem and Root of Bruce Plant (Nauclea latifolia). UNIOSUN J Sci. 2016; 1(1):74-81.
15.Yesufu HB and Hussaini IM. Studies on Dietary Mineral Composition of the Fruit of Sarcocephalus latifolius (Smith) Bruce (Rubiaceae). J Nutr Food Sci. 2014; S8:006. doi:10.4172/2155-9600.S8-006. DOI: https://doi.org/10.4172/2155-9600.S8-006
16.Zemolin AP, Cruz LC, Paula MT, Pereira BK, Albuquerque MP, Victoria FC, Pereira AB, Posser T, Franco JL. Toxicity Induced by Prasiola crispa to Fruit-fly Drosophila melanogaster and Cockroach Nauphoeta cinerea: Evidence for Bioinsecticide Action. J Toxicol Environ Health A. 2014; 77(1-3):115-124. DOI: https://doi.org/10.1080/15287394.2014.866927
17.Abolaji AO, Kamdem JP, Farombi EO, Rocha JBT. Drosophila melanogaster as a Promising Model Organism in Toxicological Studies. Arch Basic Appl Med. 2013; 1:33-38.
18.Feany MB and Bender WW. A Drosophila model of Parkinson's disease. Nature 2000;404(6776):394-398. DOI: 10.1038/350 06074 DOI: https://doi.org/10.1038/35006074
19.Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, Da Silva Loreto EL, Rocha JBT. Ovotoxicants 4-Vinylcyclohexene 1,2-Monoepoxide and 4-Vinylcyclohexene Diepoxide Disrupt Redox Status and Modify Different Electrophile Sensitive Target Enzymes and Genes in Drosophila melanogaster. Redox Biol. 2015; 5:328–339. DOI: https://doi.org/10.1016/j.redox.2015.06.001
20.Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO. Resveratrol Prolongs Lifespan and Improves 1-Methyl-4-Phenyl 1,2,3,6 Tetrahydropyridine Induced Oxidative Damage and Behavioural Deficits in Drosophila melanogaster. Biochem. Biophys Res Commun. 2018; 503:1042-1048. DOI: https://doi.org/10.1016/j.bbrc.2018.06.114
21.Farombi EO, Abolaji AO., Farombi TH., Oropo AS, Owoje OA, Awunah MT. Garcinia kola Seeds Biflavonoid Fraction (Kolaviron), Increases Longevity and Attenuates Rotenone Induced Toxicity in Drosophila melanogaster. Pestic Biochem Physiol. 2018; 145:39-45. DOI: https://doi.org/10.1016/j.pestbp.2018.01.002
22.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the Folin Phenol Reagent. J Biol Chem. 1951; 193:265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
23.Ellman GL. Tissue Sulfhydryl Groups. Arch Biochem Biophys. 1959; 82(1):70-77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6
24.Habig WH and Jakoby WB. Assays for Differentiation of Glutathione S-Transferases, Methods. Enzymol. 1981; 77:398-405. DOI: https://doi.org/10.1016/S0076-6879(81)77053-8
25.Jollow DJ, Mitchell JR., Zampalione N, Gillette JR. Bromobenzene Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3, 4- Bromobenzene as Hepatotoxic Metabolite. Pharmacol. 1974; 11: 151-169. DOI: https://doi.org/10.1159/000136485
26.Clairborne A. Catalase activity. In handbook of Methods for Oxygen Radical Research, Greenwald, R.A. (Ed.), CRC press, Boca Raton, FL, USA; 1985; 283-284p.
27.Ellman GL, Courtney KD, Andres V, Feathers-Stone RM. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem Pharmacol. 1961; 7:88-95. DOI: https://doi.org/10.1016/0006-2952(61)90145-9
28.Wolff SP. Ferrous Ion Oxidation in the Presence of Ferric Ion Indicator Xylenol Orange for Measurement of Hydroperoxides. Methods Enzymol 1994; 233:182-189. DOI: https://doi.org/10.1016/S0076-6879(94)33021-2
29.Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Anal Biochem. 1982; 126(1):131-138. DOI: https://doi.org/10.1016/0003-2697(82)90118-X
30.Varshney R and Kale RK. Effect of Calmodulin Antagonists on Radiation-Induced Lipid Peroxidation in Microsomes. Int Radiat Biol. 1990; 58:743-773. DOI: https://doi.org/10.1080/09553009014552121
31.Lopez T, Schriner SE, Okoro M, Lu D, Chiang BT, Huey J, Jafari M. Green Tea Polyphenols Extend the Lifespan of Male Drosophila melanogaster while Impairing Reproductive Fitness. J Med Food. 2014; 12:1314–1321. DOI: https://doi.org/10.1089/jmf.2013.0190
32.Dang L, Els JM, Damme V. Toxic Proteins in Plants. Phytochem. 2015; 117:51–64. DOI: https://doi.org/10.1016/j.phytochem.2015.05.020
33.Maag D, Erb M, K€ollner TG, Gershenzon J. Defensive Weapons and Defense Signals in Plants: Some Metabolites Serve Both Roles. Bioessays. 2015; 37:167–174. DOI: https://doi.org/10.1002/bies.201400124
34.Ntelios D, Kargakis M, Topalis T, Drouzas A, Potolidis E. Acute Respiratory Failure Due to Nicotiana glauca Ingestion. Hippokratia. 2013; 17(2):183–184.
35.Sudati JH, Vieira FA, Pavin SS, Dias GR, Seeger RL, Golombieski R, Athayde ML, Soares FA, Rocha JB, Barbosa NV. Valeriana officinalis Attenuates the Rotenone-Induced Toxicity in Drosophila melanogaster. NeuroToxicol. 2013; 37:118–126. DOI: https://doi.org/10.1016/j.neuro.2013.04.006
36.Olanrewaju JA, Bayo-Olugbami AA, Enya JI, Etuh MA, Soyinka OS, Akinnawo W, Oyebanjo O, Okwute P, Omotoso D, Afolabi TO, Pelumi A, Soremekun O, Arietarhire L, Olatoye E, Kalu UJ. Modulatory Role of Dose-dependent Quercetin Supplemented Diet on Behavioral and Anti-oxidant system in Drosophila melanogaster model. J Afr Assoc Physiol Sci. 2023; 11(1):45-54. DOI: https://doi.org/10.4314/jaaps.v11i1.5
37.Erel O and Neselioglu S. A Novel and Automated Assay for Thiol/ Disulphide Homeostasis. Clin Biochem. 2014; 47:326–332 DOI: https://doi.org/10.1016/j.clinbiochem.2014.09.026
38.Oyebode OT, Abolaji AO, Oluwadare JO, Adedara AO, Olorunsogo OO. Apigenin Ameliorates D-Galactose-Induced Lifespan Shortening Effects via Antioxidative Activity and Inhibition of Mitochondrial-Dependent Apoptosis in Drosophila melanogaster. J Funct Food. 2020; 69:103957. https://doi.org/10.1016/j.jff.2020.103957. DOI: https://doi.org/10.1016/j.jff.2020.103957
39.Ecker A, Gonzaga TKS, Seeger RL, Santos DN, Loreto JM, Boligon AA, Meinerz DF, Lugokenski TH, Rocha JBTD, Barbosa NV. High-Sucrose Diet Induces Diabetic Like Phenotypes and Oxidative Stress in Drosophila melanogaster: Protective Role of Syzygiumcumini and Bauhinia forficate. Biomed Pharmacother. 2017; 89:605–616. DOI: https://doi.org/10.1016/j.biopha.2017.02.076
40.Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev. 2014; 2014:360438. DOI: https://doi.org/10.1155/2014/360438
41.Craig LA, Hong NS, McDonald RJ. Revisiting the Cholinergic Hypothesis in the Development of Alzheimer’s Disease. Neurosci Biobehav Rev. 2011; 35:1397–1409. DOI: https://doi.org/10.1016/j.neubiorev.2011.03.001
42.Halmenschelager PT and Rocha JBT. Biochemical CuSO4 Toxicity in Drosophila melanogaster Depends on Sex and Developmental Stage of Exposure. Biol Trace Elem Res. 2019; 189(2):574-585. DOI: https://doi.org/10.1007/s12011-018-1475-y
43.Aboul Ezz HSA, Khadrawy YA, Mourad IM. The effect of Bisphenol A on Some Oxidative Stress Parameters and Acetylcholinesterase Activity in the Heart of Male Albino Rats. Cytotechnol. 2015; 67:145–155. DOI 10.1007/s10616-013-9672-1 DOI: https://doi.org/10.1007/s10616-013-9672-1
44.Okumura M, Kadokura H, Hashimoto S, Yutani K, Kanemura S. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol. A J Biol Chem. 2014; 289(39):27004–27018. DOI: https://doi.org/10.1074/jbc.M114.564104


