Anti-hyperglycemic Effect of Aqueous Extract of Calotropis procera on High Sucrose-Induced Oxidative Stress in Drosophila melanogaster
Main Article Content
Abstract
Oxidative stress is implicated in the pathogenesis of several metabolic disorders, including diabetes – a metabolic disease characterized by persistent hyperglycemia. This study investigated the anti-hyperglycemic effect of aqueous extract of Calotropis procera (AECP) leaf on high sucrose-induced oxidative stress in Drosophila melanogaster. Flies were grouped into six (40 flies/vial, 5 vials/group). Group 1 (control) were fed with basal diet only, groups 2, 3, 4, and 5 were fed daily with 30% sucrose diet for 7 days. Groups 3, 4 and 5 were further fed with diets fortified with metformin (0.8 mg/g), and AECP (0.5 and 1 mg/g), respectively, for 7 days. Group 6 flies were daily exposed to AECP (1 mg/g diet) only for 7 days. Climbing ability test was done, and flies were thereafter homogenized. Parameters, such as glucose, nitrite, and total thiol levels, as well as activities of antioxidant enzymes (catalase and glutathione-s-transferase (GST)) and acetylcholinesterase (AChE) were measured. Results indicated a significant (p< 0.05) increase in glucose and nitrite levels, as well as AChE activity, with a significant (p<0.05) decrease in climbing ability, total thiol level, and antioxidant enzymes’ activities in flies exposed to sucrose only when compared with control. Exposure of sucrose-fed flies to AECP caused significant (p<0.05) reversal in the levels and activities of these parameters. No significant abnormality was noted in these parameters in AECP only when compared to the control. The leaf of AECP possessed antioxidant and anti-hyperglycemic properties, and could serve as an alternative therapy for diabetes and its complications, including neuropathy.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Caturano A, D'Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, Rinaldi L, Vetrano E, Marfella R, Monda M, Giordano A, Sasso FC. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023; 45(8): 6651-6666. 10.3390/cimb45080420. DOI: https://doi.org/10.3390/cimb45080420
2.Okwudiri Ihegboro G, Alowonle Owolarafe T, James Ononamadu C, Bello H, Kufre-Akpan M. Calotropis procera Root Extract’s Anti-diabetic and Hepatoprotective Therapeutic Activity in Alloxan-induced Pancreatic Toxicity in Wistar Rats. Iran. J. Toxicol. 2022; 16(4): 285-296. 10.32598/IJT.16.4.966.1. DOI: https://doi.org/10.32598/IJT.16.4.966.1
3.Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018; 138: 271-281. 10.1016/j.diabres.2018.02.023. DOI: https://doi.org/10.1016/j.diabres.2018.02.023
4.International Diabetes Federation. IDF Diabetes Atlas. Brussels, Belgium: 2025.
5.Ajiboye BO, Diayi A, Agunbiade SO, Akinyemi AJ, Adewale OB, Ojo OA. Ameliorating activity of polyphenolic-rich extracts of Basella rubra L. leaves on pancreatic beta-cell dysfunction in streptozotocin-induced diabetic rats. J. Complement. Integr. Med. 2022; 19(2): 335-344. 10.1515/jcim-2020-0304. DOI: https://doi.org/10.1515/jcim-2020-0304
6.Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. Front. Plant Sci. 2021; 12: 690806. 10.3389/fpls.2021.690806. DOI: https://doi.org/10.3389/fpls.2021.690806
7.Kazeem MI, Mayaki AM, Ogungbe BF, Ojekale AB. In-vitro Studies on Calotropis procera Leaf Extracts as Inhibitors of Key Enzymes Linked to Diabetes mellitus . Iran. J. Pharm. Res. 2016; 15(Suppl): 37-44.
8.Amini MH, Ashraf K, Salim F, Meng Lim S, Ramasamy K, Manshoor N, Sultan S, Ahmad W. Important insights from the antimicrobial activity of Calotropis procera. Arab. J. Chem. 2021; 14(7): 103181. https://doi.org/10.1016/j.arabjc.2021.103181. DOI: https://doi.org/10.1016/j.arabjc.2021.103181
9.Anadozie SO, Aduma AU, Adewale OB. Alkaloid-rich extract of Buchholzia coriacea seed mitigate the effect of copper-induced toxicity in Drosophila melanogaster. Vegetos. 2024; 37(2): 460-468. 10.1007/s42535-023-00760-9. DOI: https://doi.org/10.1007/s42535-023-00760-9
10.Baenas N, Wagner AE. Drosophila melanogaster as a Model Organism for Obesity and Type-2 Diabetes mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules. 2022; 12(2). 10.3390/biom12020307. DOI: https://doi.org/10.3390/biom12020307
11.Adesanoye OA, Farodoye OM, Adedara AO, Falobi AA, Abolaji AO, Ojo OO. Beneficial actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in Drosophila melanogaster. Food. Chem. Toxicol. 2021; 157: 112620. https://doi.org/10.1016/j.f ct.2021.112620. DOI: https://doi.org/10.1016/j.fct.2021.112620
12.Adedara IA, Abolaji AO, Rocha JB, Farombi EO. Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem. Res. 2016; 41(6): 1430-1438. 10.1007/s11064-016-1852-x. DOI: https://doi.org/10.1007/s11064-016-1852-x
13.Oyaluna Z, Abolaji A, Babalola C. Effects of Ruzu Herbal Bitters, a Traditional Nigerian Polyherbal Drug, on Longevity and Selected Toxicological Indices in Drosophila melanogaster. Biointerface Res. Appl. Chem. 2021; 11. 10.33263/BRIAC 112.96389645. DOI: https://doi.org/10.33263/BRIAC112.96389645
14.Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. The Analyst. 1972; 97(151): 142-145. 10.1039/an9729700142. DOI: https://doi.org/10.1039/an9729700142
15.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193(1): 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
16.Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982; 126(1): 131-138. https://doi.org/10.1016/0003-2697(82)90118-X. DOI: https://doi.org/10.1016/0003-2697(82)90118-X
17.Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959; 82. 10.1016/0003-9861(59)90090-6. DOI: https://doi.org/10.1016/0003-9861(59)90090-6
18.Claiborne A. Catalase Activity. Handbook Methods For Oxygen Radical Research: CRC Press; 2018. p. 283-284.
19.Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7(2): 88-95. https://doi.org/10.1016/0006-2952(61)90145-9. DOI: https://doi.org/10.1016/0006-2952(61)90145-9
20.Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol. 2023; 14: 1112363. 10.3389/fendo.2023.1112363. DOI: https://doi.org/10.3389/fendo.2023.1112363
21.Dilworth L, Facey A, Omoruyi F. Diabetes mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021; 22(14). 10.3390/ijms22147644. DOI: https://doi.org/10.3390/ijms22147644
22.Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The Management of Diabetes mellitus Using Medicinal Plants and Vitamins. Int. J. Mol. Sci. 2023; 24(10). 10.3390/ijms24109085. DOI: https://doi.org/10.3390/ijms24109085
1.23. Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022; 184: 114-134. https://doi.org/10.1016/j.freerad biomed. 2022.03.019. DOI: https://doi.org/10.1016/j.freeradbiomed.2022.03.019
23.Oyetayo BO, Abolaji AO, Fasae KD, Aderibigbe A. Ameliorative role of diets fortified with Curcumin in a Drosophila melanogaster model of aluminum chloride-induced neurotoxicity. J. Funct. Foods. 2020; 71: 104035. https://doi.org/10.1016/j.j ff.2020.104035. DOI: https://doi.org/10.1016/j.jff.2020.104035
24.Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol. Appl. Pharmacol. 2015; 289(3): 361-370. 10.1016/j.taap.2015.10.006. DOI: https://doi.org/10.1016/j.taap.2015.10.006
25.Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci. Rep. 2023; 14: 57-63. 10.1016/j.ibneur.2022.12.006. DOI: https://doi.org/10.1016/j.ibneur.2022.12.006


