Nutritional profiling of Twenty-Five Genotypes of African Yam Bean (Sphenostylis stenocarpa Hochst. Ex A. Rich Herms) Grown in Humid Agroecology of Nigeria

Main Article Content

Linus J. Agah
Patrick O. Ukatu
Peter E. Ogbonna
Christian U. Agbo
Mumukom M. Anchang

Abstract

African yam bean (AYB) is a Sub-Saharan African stable food with high nutritional value. There is a lack of improved varieties of AYB that can adapt to varied agroecological conditions. This study aimed to determine the nutritional and anti-nutritional contents of AYB grown in humid agroecology of Nigeria. Twenty-five genotypes (G1 – G25) of AYB planted in a randomized complete block design in 3 replications and 25 treatments were grown in humid environment in the 2020 planting season. After harvesting, they were analyzed for their nutritional and anti-nutritional qualities. Twenty (20) genotypes were identified for selection based on high vitamins, minerals, nutrients and low anti-nutrient compositions. Genotype for vitamins study were G23-Orokam for retinol (493.67 µg/100g), G21-Ikom  for thiamin (15.95 mg/100g), G24-Nsukka for riboflavin (6.18 mg/100g),  G7-Dybw11 for niacin (9.22 mg/100g), G19-Ekureku for ascorbic acid (2.79 mg/100g), and G20-Ediba for alpha tocopherol (8.45 mg/100g), while genotypes for minerals study were G25-Abakaliki for phosphorus (231.50 mg/100g), G13-DybB17 for magnesium (16.22 mg/100g) and sodium (4.60 ppm), G18-Ugep for potassium (6.01 ppm), G24-Nsukka for calcium (19.90 ppm), G11-DybS14 for copper (0.29 ppm), G22-Onueke for iron (7.48 ppm), and G6-DybS10 for zinc (0.25 ppm). Genotypes for nutrients study were G10-DybB15 for carbohydrates (72.70%), G19-Ekureku for protein (24.95%), G2-DybS4 for fibre (3.75%), G11-DybS14 for fat (2.25%), Ediba and G19-Ekureku for ash (3.43%), and G8-DybS11 for moisture content (7.75%). Genotype G1-DybB with high mineral contents and low anti-nutritional content is safer for consumption, and is recommended for selection in quality breeding improvement study.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Nutritional profiling of Twenty-Five Genotypes of African Yam Bean (Sphenostylis stenocarpa Hochst. Ex A. Rich Herms) Grown in Humid Agroecology of Nigeria. (2025). Tropical Journal of Natural Product Research , 9(7), 3230 – 3243. https://doi.org/10.26538/tjnpr/v9i7.50

References

1.Stathers TE, Amold SEJ, Rumney EJ, Hopson C. Measuring the nutritional cost of insect infestation of stored maize and cowpea. Food Sec. 2019; 12:3-7. https://doi.org/10.1007/s12571-019-00997-w. DOI: https://doi.org/10.1007/s12571-019-00997-w

2.Baiyeri S, Uguru M, Ogbonna P, Samuel-Baiyeri CC, Okechukwu R, Kumaga F, Amoateym C. Evaluation of nutritional compositions of seeds of some selected African Yam Bean (Sphenostylis stenocarpa hochst ex.a. rich (herms) accessions. Agro–Sci. 2018; 17(2):36-34. DOI: https://doi.org/10.4314/as.v17i2.5

3.Shelenga TV, Salikova AV, Popov V, Egorova GP, Malyshev LL, Vishnyakova MA. Interrelations between the main seed quality characteristics of narrow leaf lupine from VIR collection. J Gene Breed. 2025; 29(1):35-43. DOI: https://doi.org/10.18699/vjgb-25-05

4.Fakai RU and Garba A. Chemical and Nutritional composition of selected legumes available in Kebbi State Nigeria. Int J Appl Sci Res. 2023; 1(2);131-138. https//doi.org/10.59890/ijasr.v1i2.390.

5.Nwokolo EA. Nutritional Assessement of African yam bean Sphenostylis stenocarpa Hochst ex. A Rich) Herm and bambara groundnut, Vigna subterranean [L]. J Sci Food Agric. 1987; 41(2):123-129. http://dx.doi.org/10.1002/jsfa.2740410205 DOI: https://doi.org/10.1002/jsfa.2740410205

6.Anya MI and Ozung PO. Proximate, mineral and anti-nutritional compositions of raw and processed African Yam Bean (Sphenostylis stenocarpa) seeds in Cross River State, Nigeria. Glob J Agric Sci. 2019; 18(1):19-29. DOI: 10.4314/glass. V18i1.3 DOI: https://doi.org/10.4314/gjass.v18i1.3

7.Gbenga-Fabusiwa FJ. African yam beans (Spenostylis stenocarpa): A review of a novel tropical food plant for human nutrition, health and food security. Afr J Food Sci. 2021; 15(2):33-47. DOI: https://doi.org/10.5897/AJFS2020.1961

8.Oguntoyinbo OO, Udoh IG, Adeyemi IB. Chemical composition and sensory characteristics of cookies produced from wheat and African yam bean flours. Agric Food Nat Resourc J. 2024; 3(2): 275-281.

9.Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Poopola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean (Sphenostylis stenocarpa Hochst. Ex. A. Rich). Heliyon. 2021; 7(11):e08481 https://doi.org/10.1016/j.heliyon.2021.e08481. DOI: https://doi.org/10.1016/j.heliyon.2021.e08481

10.Shitta NS, Edemodu AC, Abtew WG, Tesfaye AB. A review on the cooking attributes of African yam bean (Sphenostylis stenocarpa). Legume Res. 2021; 2. doi.10.5772/intchopen.99674.

11.Potter D. Economic Botany of Sphenostylis (Leguminosae). Eco Bot. 1992; 46(3):262- 275. DOI: https://doi.org/10.1007/BF02866625

12.Okpara DA and Omaliko CPE. Effect of Staking, nitrogen and Phosphorus fertilizer rate on yield and yield components of African yam bean (Sphenostylis stenocarpa). Ghana J Agric Sci. 1995; 28(1):23-28. http://dx.doi.org/10.4314/gjas.v28i1.2004. DOI: https://doi.org/10.4314/gjas.v28i1.2004

13.Ojo MA. Tannins in Foods. Nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume Seeds-A. review. Prev Nutr Food Sci. 2022; 27(1):14-19. DOI: https://doi.org/10.3746/pnf.2022.27.1.14

14.Adegboyega TT, Abberton MT, AbdelGadir AH, Dianda M, Maziya-Dixon B, Oyatomi OA, Ofodile S, Babalola OO. Evaluation of nutritional and antinutritional properties of African yam bean (Spenostylis stenocarpa Hochst E. A. Rich.) Harms.) Seed. J Food Qual. 2020; 4:1-11. https://doi.org/10.1155/ 2020/6569420.

15.Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod Process Nutr. 2020; 2(6). https://doi.org/10.1186/s43014-020-0020-5. DOI: https://doi.org/10.1186/s43014-020-0020-5

16.Okoye JI, Igbokwe QN, Okechukwu CO. Effects of thermal processing on the nutritional and antinutritional properties of African yam bean (Sphenostylis stenocarpa) seed flours. Res J Food Sci Nutr. 2024; 9(2):38-51. https://doi.org/10.31248/ RJFSN2024.167. DOI: https://doi.org/10.31248/RJFSN2024.167

17.Galfo M, Meccati F, Melini F, Melini V. Dietary fibre consumption in a sample of Italian adults: Relationship between habitats and gender, ponderal status and physical activity. J Health Sci Med Res. 2024; 42(2):e20231011 (doi:10.31584/jhsmr.20231011). DOI: https://doi.org/10.31584/jhsmr.20231011

18.Adeyeye EI, Olaleye AA, Aremu MO, Atere JO, Idowu OT. Sugar, antinutrient and food properties levels in raw fermented and germinated pearl millet grains. FUW Trends Sci Technol. 2020; 5(3):745-758.

19.Onyenekwe PC, Njoku GC, Ameh DA. Effect of cowpea processing methods on flatulence causing oligosaccharides. Nutr Res. 2000; 20(3):349-358. doi:10.1016/50271- 5317(00)00128 -7. DOI: https://doi.org/10.1016/S0271-5317(00)00128-7

20.National Research Council. Lost Crops of Africa Vegetables (Volume II). Washington DC. The Nat Acad Press; 2006. 378p.

21.AOAC. “Official Methods of Analysis of the Association of Official Analytical Chemists, (Vol 1 ed.). Arlington, Virginia, USA: Association of Official Analytical Chemists INC; 1990. 771p.

22. Pearson D. The Chemical Analysis of Foods. (7th ed.). Edinburgh, London: Churchill and living stone; 1976. 5-78 p.

23.James CJ. The Analytical Chemistry of Foods. (1st ed.). New York, USA: Chapman and Hall; 1995. 86 p. DOI: https://doi.org/10.1007/978-1-4615-2165-5

24.Gomezulu AD and Mongi RJ. Protein content and anti-nutritional factors in pigeon pea and effect on its protein isolate on physical properties and consumer preference of beef sausages. Appl Food Res. 2022; 2(1):100047 https:// doi.org/10.1016/j.afres.2022.100047 DOI: https://doi.org/10.1016/j.afres.2022.100047

25.Methukumaran P, Karthikeyan R, Kumaravel S. A comprehensive guide to quality analysis of fruit juices and oft drink-Analytical procedures. Skyfox Publ. Gp; 2020. 36p https://www.skyfox.co/.2020

26.Association of Analytical Chemists (AOAC). Association of Analytical Chemists Official Method of Analysis of the Association of Analytical Chemists, 22nd ed.; Arlington,VA, USAWashington, DC, USA, 2023.

27.AOAC. Determination of moisture, ash, protein and fat. In Official Method of Analysis of the Association of Analytical Chemists, 18th ed.; AAOAC: Washington, DC, USA, 2005.

28.Onwuka GI. Food Analysis and Instrumentation Theory Practice (2nd ed..) Naphthali prints, Lagos, Nigeria, 2018; 364 -390 p.

29.Gyesi JN, Opoku R, Borquaye LS. Chemical composition, total phenolic content and antioxidant activities of the essential oil of the leaves and fruit pulp of Annona muricata L. (Soursop) from Ghana. Biochem Res Int. 2019; 2019:4164576. https://doi.org/10.1155/2019/4164576 DOI: https://doi.org/10.1155/2019/4164576

30.Falade SO, Dare AF, Bello MO, Osuntogun BO, Adewusi SRA. Varietal changes in proximate composition and the effect of processing on the ascorbic acid content of some Nigerian vegetables. J Food Technol. 2004; 2(2):103-108.

31.Adia MM, Emami SN, Byamukama R, Faye I. Borg-Karlson A.-K. Antiplasmodial activity and phytochemical analysis of extracts from selected Uganda medicinal plants. J Ethnopharmacol. 2016; 186:14-19. DOI: https://doi.org/10.1016/j.jep.2016.03.047

32.Meda AL, Lamien CE, Romita M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005; 91(3):571- 577. DOI: https://doi.org/10.1016/j.foodchem.2004.10.006

33.Ogbemudia RE, Chika NB, Benedicta A. Mineral and proximate composition of soya bean. Asian J Phys Chem Sci. 2017; 4(3):1-6. DOI: https://doi.org/10.9734/AJOPACS/2017/38530

34.Ujong AE, Aniefiok IE, Onyekwe JC. Nutrient composition and sensory properties of breakfast cereal made from yellow maize and enriched with soybean and groundnut flours. Turk J Agric Food Sci Technol. 2023; 11(4):651-656. https://doi.org/10.24925/turjaf.v11i4651-656-5369. DOI: https://doi.org/10.24925/turjaf.v11i4.651-656.5369

35.Dhingra D, Micheal M, Rajput H, Patil RT. Dietary fibre in foods: A review. J Food Sci Technol. 2012; 49(3):255-266. DOI: 10.1007/S13197011 - 0365 -5 DOI: https://doi.org/10.1007/s13197-011-0365-5

36.Shitta NS, Abebe AT, Oselebe HO, Edemodu AC, Alamu EO, Abberton MT, Dixon BM, Adesokan M, Fenta B, Abtew WG. Evaluation of 93 Accessions of African Yam Bean (Sphenostylis stenocarpa) grown in Ethiopia for physical, nutritional, anti-nutritional and cooking properties. Hindawi J Food Qual. 2022; 8386258:1-11. https://doi.org/10.1155/2022/ 8386258. DOI: https://doi.org/10.1155/2022/8386258

37.Popoola JO, Ojuederie OB, Aworuse OS, Adelekan A, Oyelakin AS, Oyesola OL, Akinduti PA, Dhunsi SO, Adegboyega TT, Oranusi SU, Ayilara MS, Omonhinmin CA. Nutritional, functional and bioactive properties of African underutilized legumes. Front Plant Sci. 2023; 14:1105364. doi.10.3389/Epls.20231105364. DOI: https://doi.org/10.3389/fpls.2023.1105364

38.Zhou H, Chen D-W, He J, Mao X-B, Yu J, Zheng P, Luo J-Q, Luo Y-H, Yan H, Yu B. Effects of different combinations of dietary starch and non-starch polysaccharides on intestinal functions, liquid and glucose metabolism in weaned pigs. J Anim Feed Sci. 2020; 29(3):241-249. https://doi.org/10.22356/jafs/127688/2020. DOI: https://doi.org/10.22358/jafs/127688/2020

39.George TT, Obilana AO, Oyeyinka SA. The prospects of African Yam Bean: Past and future importance. Heliyon. 2020; 6(11)e05458. DOI: 10.1016/j.heliyon 2020.e05458 DOI: https://doi.org/10.1016/j.heliyon.2020.e05458

40.Nnamani CV, Ajayi SA, Oselebe HO, Atkinson CJ, Adewale BD, Igwe DO. Update on nutritional diversity in Sphenostylis stenocarpa (Hochst ex.a. rich (herms), for food security and conservation. Amer J Agric Biol Sci. 2018; 13:38-49. doi:10.3844/ajabssp.218.38.49. DOI: https://doi.org/10.3844/ajabssp.2018.38.49

41.Okudu HO and Ojinnaka MC. Effect of soaking time on the nutrient and antinutrient composition of bambara groungnut seeds (Vign subterranean). Afr J Food Sci Technol. 2017; 8(2):25-29. doi:10.14303/ajfst. 2017.0099

42.Ugwu J, Ozowalu PC, Nsude HO, Ejiofor NC. Nutritional analysis of african yam bean and bambara nut pudding. J Curr Biomed Res. 2022; 2(6):617-632. DOI: https://doi.org/10.54117/jcbr.v2i6.4

43.Adewale BD and Nnamani CV. Introduction to food, health wealth in African yam bean, a locked - in African indigenous tuberous legume. Front Sustain Food Syst. 2022; 6:90-123. https://doi.org/10.3389/fsuls.2022726458 DOI: https://doi.org/10.3389/fsufs.2022.726458

44.Ojuederie BO, Ajiboye JA, Babalola OO. Biochemical and histopathological studies of key issues in healthy male wistar rats fed on African yam bean seed and tuber meals. J Food Qual. 2020; 88:92618. doi: 10.1155/2020/8892618 DOI: https://doi.org/10.1155/2020/8892618

45.Konyeme TE, Nyananyo BL, Tanee FBG. Diversity in proximate analysis of tuber of some African yam bean (Sphenostylis stenocarpa) (Hochst ex.a. Rich) herms (Fabaceae) accessions. J Appl Sci Environ Mgt. 2020; 24(10):1787-1793. doi: 10.4314/jasem. v24i10.12. DOI: https://doi.org/10.4314/jasem.v24i10.12

46.Oluwole OO, Olomitutu OE, Paliwal R, Oyatomi OA, Abberton MT, Obembe OO. Preliminary assessment of the association between Dart-SEQ and some Nutritional Traits in African Yam Bean. Trop J Nat Prod Res. 2020; 4(11):877-879. doi.org/10.26538/tjnpr/v4i11.5.

47.Baiyeri BO and Samuel-Baiyeri CC. Nutrients, the bioavailability of Micronutrients and antinutrient composition of African Yam Bean tubers. Trop J Nat Prod Res. 2023; 7(4):2823-2828. https://www.doi.org/10.26538/tjnpr/v7i4.26. DOI: https://doi.org/10.26538/tjnpr/v7i4.26