High Dose of Hibiscus sabdariffa L. Extract Affects Fetal Weight and Placental IGF-1 Receptor Expression in Feed-Restricted Maternal Wistar Rats

Main Article Content

Neng Tine Kartinah
Suhartika
Dewi Sukmawati
Erni Hernawati Purwaningsih

Abstract

Pregnancy-related undernutrition can alter Insulin-like growth factor 1 (IGF-1) receptor signaling, impacting fetal development. Research suggests that Hibiscus Sabdariffa Linn (HSL) extract consumption during pregnancy may influence fetal outcomes. However, limited studies have examined the effects of HSL on fetal growth through the IGF-1 receptor pathway in feed-restricted mothers. This study aims to investigate the impact of high doses of HSL extract on fetal weight in feed-restricted maternal rats by targeting the placental IGF-1 receptor pathway. Twenty Wistar rats were randomly divided into normal control, feed-restricted groups (FR), and FR groups treated with 100 and  200 mg/kg BW HSL extract. A Caesarean section was performed on day 18 of pregnancy to deliver the fetuses. The fetal weight was measured, and placental IGF-1 receptor expression was analyzed using RT-qPCR. The results revealed that fetal weight in FR group (833  206.35) and FR+HSL groups (709  235.93; 1453  76.45) respectively, were significantly lower than the control group (1410  76.75; p <0.05), and placental IGF-1 receptor expression in FR group (1.006  0.116) and FR+HSL groups (1.127  0.373; 0.847  0.315) were significantly lower than the control group (1.658  0.153) (p <0.05). Furthermore, placental IGF-1 receptor expression was positively correlated with fetal weight (r = 0.731, p < 0.05). In conclusion, the administration of high doses of HSL extract to feed-restricted maternal rats did not result in a significant increase in fetal body weight through IGF-1 receptor expression. Caution should be exercised when consuming high-dose HSL during pregnancy.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Neng Tine Kartinah, Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Department of Physiology and Biophysic, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Suhartika, Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Midwifery Study Program, Politeknik Kesehatan Kemenkes Bandung, Bandung, Indonesia

Dewi Sukmawati, Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Department of Histology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Erni Hernawati Purwaningsih, Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Department of Medical Pharmacy, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.

How to Cite

High Dose of Hibiscus sabdariffa L. Extract Affects Fetal Weight and Placental IGF-1 Receptor Expression in Feed-Restricted Maternal Wistar Rats. (2025). Tropical Journal of Natural Product Research , 9(7), 3127-3131. https://doi.org/10.26538/tjnpr/v9i7.36

References

1. Toschi P, Baratta M. Ruminant placental adaptation in early maternal undernutrition: An Overview. Front Vet Sci. 2021;8. DOI: 10.3389/fvets.2021.755034 DOI: https://doi.org/10.3389/fvets.2021.755034

2. García-García RM, Arias-Álvarez M, Rodríguez M, Sánchez-Rodríguez A, Formoso-Rafferty N, Lorenzo PL, Rebollar PG. Effects of feed restriction during pregnancy on maternal reproductive outcome, fetal hepatic IGF gene expression, and offspring performance in the rabbit. Animal. 2021;15(11):100382. DOI: 10.1016/j.animal.2021.100382 DOI: https://doi.org/10.1016/j.animal.2021.100382

3. Sferruzzi‐Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin‐like growth factors: resource allocation to fetal growth. J Physiol. 2017;595(15):5057–5093. DOI:10.1113/JP273330

4. Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi L, Löfqvist C, Smith, L. E., & Hård, A. L. Role of Insulin-like growth factor 1 in fetal development and in the early postnatal life of premature infants. Am J Perinatol. 2016;33(11): 1067–1071. DOI: 10.1055/s-0036-1586109. DOI: https://doi.org/10.1055/s-0036-1586109

5. Kaur H, Muhlhausler BS, Roberts CT, Gatford KL. The growth hormone-insulin-like growth factor axis in pregnancy. J Endocrinol.

2021;251(3):23–39. DOI: 10.1530/JOE-21-0087. DOI: https://doi.org/10.1530/JOE-21-0087

6. Kadakia R, Josefson J. The relationship of insulin-like growth factor 2 to fetal growth and adiposity. Horm Res Paediatr. 2016;85(2):75–82. DOI: 10.1159/000443500 DOI: https://doi.org/10.1159/000443500

7. Gibson C, de Ruijter-Villani M, Stout TAE. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front Vet Sci. 2022;9. DOI: 10.3389/fvets.2022.912721. DOI: https://doi.org/10.3389/fvets.2022.912721

8. Sferruzzi‐Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin‐like growth factors: resource allocation to fetal growth. J Physiol. 2017 Aug 23;595(15): 5057–5093. DOI: 10.1113/JP273330. DOI: https://doi.org/10.1113/JP273330

9. Tumminia A, Scalisi NM, Milluzzo A, Ettore G, Vigneri R, Sciacca L. Maternal diabetes impairs insulin and IGF-1 receptor expression and signaling in human placenta. Front Endocrinol (Lausanne). 2021;12. DOI: 10.3389/fendo.2021.621680 DOI: https://doi.org/10.3389/fendo.2021.621680

10. Suhartika, Jeanne Adiwinata Pawitan. Pharmacological effect of Hibiscus sabdariffa Linn to prevent insulin resistance. JMPAS. 2024;13(I3):6525 – 6531. DOI: 10.55522/jmpas.V1313.5829. DOI: https://doi.org/10.55522/jmpas.V13I3.5829

11. Ekasari CP, Widyarti S, Sumitro SB. The analysis of antioxidant activity and capacity of boiled and infused Indonesian herbals. Trop J Nat Prod Res. 2023;7(1):2145-2151. DOI: 10.26538/tjnpr/v7i1.9. DOI: https://doi.org/10.26538/tjnpr/v7i1.9

12. Onyeukwu OB, Dibie DC, Njideaka OT. Hibiscus sabdariffa-uses, nutritional and therapeutic benefits - A review. J Biosci Biotechnol Discov. 2023;8(2): 18–23. DOI: 10.31248/JBBD2023.178 DOI: https://doi.org/10.31248/JBBD2023.178

13. Edityaningrum CA, Khairurrizki A, Nurani LH, Bachri MS, Yuliani DUS, Kintoko, Nurkhasanah, Irham M, Zakaria ZA. Co-chemotherapy effect of the extract of Hibiscus sabdariffa and Cisplatin against apoptosis and anti-proliferation on t47d and Vero cells. Trop J Nat Prod Res.

2024;8(6):7509-7513. DOI: 10.26538/tjnpr/v8i6.27. DOI: https://doi.org/10.26538/tjnpr/v8i6.27

14. Apaliya MT, Kwaw E, Mahunu GK, Osei-Kwarteng M, Osae R, Azirigo M. Chapter 10: Nutritional properties and feeding values of Hibiscus sabdariffa and their products. In Abdalbasit Adam Mariod, Haroon Elrasheid Tahir, Gustav Komla Mahunu (Eds.), Roselle (Hibiscus sabdariffa). Academic Press; 2021.137–154p. DOI: 10.1016/B978-0-12-822100-6.00006 DOI: https://doi.org/10.1016/B978-0-12-822100-6.00006-9

15. Chukwunonso K. Nwabufo, O Olusanya. Biochemical effect of Hibiscus sabdariffa calyx extracts on the reproductive hormones of male Wistar rat. Adv Appl Sci Res. 2017;8(2):38–41.

16. I. Ilyas I, T. Kartinah N, Andriani T, A. Goernarjo R, N. Kahanjak D, J Freisleben H. Effects of Hibiscus sabdariffa Linn. on malondialdehyde and glutathione peroxidase in an overtraining rat model characterized by growth hormone, insulin-like growth factor-1, and insulin-like growth factor binding protein-3. Biomed. & Pharmacol. J. 2017;10(1):19–27. DOI: 10.13005/bpj/1076. DOI: https://doi.org/10.13005/bpj/1076

17. Nisa R, Soejoenoes A, Wahyuni S. Effect of Roselle (Hibiscus sabdariffa) on changes in hemoglobin levels in pregnant women with anemia taking an iron supplement. Belitung Nurs J. 2017;3(6):771–777. DOI: 10.33546/bnj.305 DOI: https://doi.org/10.33546/bnj.305

18. Sah SK, Sunuwar DR, Baral JR, Singh DR, Chaudhary NK, Gurung G. Maternal hemoglobin and risk of low birth weight: A hospital-based cross-sectional study in Nepal. Heliyon. 2022;8(12):e12174. DOI: 10.1016/j.heliyon.2022.e12174. DOI: https://doi.org/10.1016/j.heliyon.2022.e12174

19. Badan Pengawas Obat Dan Makanan Republik Indonesia. PerBPOM 25 Tahun 2023. Republik Indonesia.

20. He Z, Lv F, Ding Y, Zhu C, Huang H, Zhang L, Guo Y, Wang H. Insulin-like growth factor 1 mediates adrenal development dysfunction in offspring rats induced by prenatal food restriction. Arch Med Res. 2017;48(6):488–497. DOI: 10.1016/j.arcmed.2017.11.013. DOI: https://doi.org/10.1016/j.arcmed.2017.11.013

21. Harshitha R, Arunraj DR. Real‐time quantitative PCR: A tool for absolute and relative quantification. Biochem Mol Biol Educ. 2021;49(5):800–12. DOI: 10.1002/bmb.21552. DOI: https://doi.org/10.1002/bmb.21552

22. Zi Y, Qin Y, Ma C, Qiao Y, Xu X, Yang Y, He Q, Li M, Liu Y, Gao F. Transcriptome analysis reveals hepatic disordered lipid metabolism, lipotoxic injury, and abnormal development in IUGR sheep fetuses due to maternal undernutrition during late pregnancy. Theriogenology. 2024;226:350–362. DOI: 10.1016/j.theriogenology.2024.06.020. DOI: https://doi.org/10.1016/j.theriogenology.2024.06.020

23. Chukwu OO, Emelike CU, Konyefom NG, Ibekailo SN, Azubuike-Osu SO, Ezimah ACU, Iyare EE. Effect of perinatal administration of a flavonoid-rich extract from Hibiscus sabdariffa to feed-restricted rats on offspring postnatal growth and reproductive development. Curr. Issues Pharm. Med. Sci., 2021;34(2). 61-69. DOI: 10.2478/cipms-2021-0011. DOI: https://doi.org/10.2478/cipms-2021-0011

24. Enwerem N, Amos S, Azuine M, Hibiscus sabdariffa L: Safety and efficacy during pregnancy and lactation. Nurse Care Open Acces J. 2016;1(4). 69-73. DOI 10.15406/ncoaj.2016.01.00019 DOI: https://doi.org/10.15406/ncoaj.2016.01.00019

25. Jacobs A, Burns C, Patel P, Treat K, Helm BM, Conboy E, et al. Reanalysis of a novel variant in the IGF1R gene in a family with variable pre-and postnatal growth retardation and dysmorphic features: benefits and feasibility of IUSM-URDC (Undiagnosed Rare Disease Clinic) program. Cold Spring Harb Mol Case Stud. 2022 Mar 24;8(2): a006170. DOI: 10.1101/mcs.a006170. DOI: https://doi.org/10.1101/mcs.a006170

26. Winterhager E, Gellhaus A. Transplacental nutrient transport mechanisms of intrauterine growth restriction in rodent models and humans. Front Physiol.; 2017.;8(951). DOI: 10.3389/fphys.2017.00951. DOI: https://doi.org/10.3389/fphys.2017.00951

27. Francis EC, Dabelea D, Boyle KE, Jansson T, Perng W. Maternal diet quality is associated with placental proteins in the placental insulin/growth factor, environmental stress, inflammation, and mTOR signaling pathways: The Healthy Start ECHO Cohort. J Nutr. 2022;152(3):816–825. DOI: 10.1093/jn/nxab403. DOI: https://doi.org/10.1093/jn/nxab403

28. Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta Mol Basis Dis.; 2020;1866(2). DOI: 10.1016/j.bbadis.2018.12.024. DOI: https://doi.org/10.1016/j.bbadis.2018.12.024

29. Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle‐mediated transgene expression of insulin‐like growth factor 1 in the growth-restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev. 2022;89(11): 540–553. DOI: 10.1002/mrd.23644. DOI: https://doi.org/10.1002/mrd.23644

30. Harper JL, Caesar GA, Pennington KA, Davis JW, Schulz LC. Placental changes caused by food restriction during early pregnancy in mice are reversible. Reproduction. 2015 Sep;150(3): 165–172. DOI: 10.1530/REP-15-0010. DOI: https://doi.org/10.1530/REP-15-0010

31. Chen WJ, Tsai JH, Hsu LS, Lin CL, Hong HM, Pan MH. Quercetin Blocks the Aggressive Phenotype of triple negative breast cancer by inhibiting IGF1/IGF1R-mediated EMT program. J Food Drug Anal. 2021 Mar 15;29(1): 98–112. DOI: 10.38212/2224-6614.309. DOI: https://doi.org/10.38212/2224-6614.3090

32. Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. J Funct Foods. 2019 Jan 1;52: 389–407. DOI: 10.1016/j.jff.2018.11.003. DOI: https://doi.org/10.1016/j.jff.2018.11.003