Antioxidant Potentials and Phytochemical Profiling of Rafflesia zollingeriana and Tetrastigma spp. in Papring Forest, Banyuwangi
Main Article Content
Abstract
Rafflesia zollingeriana, a parasitic plant known for producing the world’s largest flower and depends on host plants from the Tetrastigma genus for survival. This plant was discovered in the Papring Forest of Banyuwangi, Indonesia, where it has historically been used in traditional herbal medicine. However, scientific understanding of its pharmacological potential remains limited. This study aimed to investigate the total flavonoid content, antioxidant activity, and bioactive compounds in ethanol extract from the perigone of R. zollingeriana and the leaves of its host (Tetrastigma rafflesia, Tetrastigma leucostaphylum, Tetrastigma dichotomum) plants and non-host (Tetrastigma papillosum) plants. Total flavonoid content was assessed spectrophotometrically, and antioxidant activity was determined using the DPPH assay. The bioactive compounds were identified using the UPLC-MS/MS. The results revealed that R. zollingeriana perigone extract exhibited strong antioxidant activity despite having low flavonoid content, suggesting that other secondary metabolites such as glycosides, polyketides, alkaloids, and lipids contribute to it. Among the host plants, T. dichotomum had the highest flavonoid content, but had moderate antioxidant activity. In contrast, the non-host T. papillosum showed relatively high flavonoid levels, but weak antioxidant activity, possibly due to its distinct metabolite profile in the absence of parasitic interaction. Overall, antioxidant activity in R. zollingeriana perigone and Tetrastigma species was not directly correlated with flavonoid content but was influenced by diversity and nature of other secondary metabolites. The distinct metabolite profiles between host and non-host species suggest that chemical factors influence parasitic compatibility.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Malabrigo Jr P, Tobias AB, Witono J , Mursidawati S, Susatya A, Siti-Munirah MY, Wicaksono A, Raihandhany R, Edwards S, Thorogood CJ. Most of the World's Largest Flowers (Genus Rafflesia) Are Now on the Brink of Extinction. Plants People Planet. 2023; 7(2):331–346. Doi: 10.1002/ppp3.10431 DOI: https://doi.org/10.1002/ppp3.10431
2. Sofiyanti N, Mat-Salleh K, Mahmud K, Mazlan NZ, Hasein MRA, Burslem DFRP. Rafflesia parvimaculata (Rafflesiaceae), a new species of Rafflesia from Peninsular Malaysia. Phytotaxa. 2016; 253(3):207-213. Doi: 10.11646/phytotaxa.253.3.4 DOI: https://doi.org/10.11646/phytotaxa.253.3.4
3. Siahaan FA, Iryadi R, Lestari D. Edaphic Characteristics of Rafflesia Habitats in Indonesia: Implications for Conservation and Propagation. J Trop Biodiv Biotechnol. 2024; 9(3):1-11. Doi: 10.22146/jtbb.89231 DOI: https://doi.org/10.22146/jtbb.89231
4. Nurchayati N, Batoro J, Hakim L, Azrianingsih R. Ethnobotanical study of Rafflesia zollingeriana and its host (Tetrastigma spp.) at Papring forest, Kalipuro, Banyuwangi, East Java, Indonesia. BIO Web Conf. 2024; 117(01019):1-10. Doi: 10.1051/bioconf/202411701019 DOI: https://doi.org/10.1051/bioconf/202411701019
5. Lestari D, Rianto N. Utilization and community attitude toward Rafflesia zollingeriana and its conservation in Meru Betiri National Park. Jurnal Penelitian Sosial dan Ekonomi Kehutanan. 2019; 16(3):211-226. Doi: 10.20886/jpsek.2019.16.3.211-226 DOI: https://doi.org/10.20886/jpsek.2019.16.3.211-226
6. Zhang L, Li B, Wang M, Lin H, Peng Y, Zhou X, Peng C, Zhan J, Wang W. Genus Tetrastigma: A review of its folk uses, phytochemistry and pharmacology. Chin Herb Med. 2022; 14(2):210-233. Doi: 10.1016/j.chmed.2022.03.003 DOI: https://doi.org/10.1016/j.chmed.2022.03.003
7. Zheng W, Wang H, Wang X, Li X, Hu J, Zi X, Zhou Y, Pan D, Fu Y. Kaempferol 3-O-Rutinoside, a Flavone Derived from Tetrastigma hemsleyanum Diels et Gilg, Reduces Body Temperature through Accelerating the Elimination of IL-6 and TNF-α in a Mouse Fever Model. Molecules. 2024; 29(7):1-20. Doi: 10.3390/molecules29071641 DOI: https://doi.org/10.3390/molecules29071641
8. Shu J, Zhao Y, Zhou Y, Lin F, Song J, Li X. Optimization of Tetrastigma hemsleyanum extraction process based on GA-BPNN model and analysis of its antioxidant effect. Heliyon. 2023; 9(10):1-21. Doi: 10.1016/j.heliyon.2023.e20200 DOI: https://doi.org/10.1016/j.heliyon.2023.e20200
9. Sun Y, Guo F, Peng X, Cheng K, Xiao L, Zhang H, Li H, Jiang L, Deng Z. Metabolism of phenolics of Tetrastigma hemsleyanum roots under in vitro digestion and colonic fermentation as well as their in vivo antioxidant activity in rats. Foods. 2021; 10(9):1-14. Doi: 10.3390/foods10092123. DOI: https://doi.org/10.3390/foods10092123
10. Wang CY, Jang HJ, Han YK, Su XD, Lee SW, Rho MC, Wang HS, Yang SY, Kim YH. Alkaloids from Tetrastigma hemsleyanum and their anti-inflammatory effects on LPS-Induced RAW264.7 cells. Molecules. 2018; 23(6):1-11. Doi: 10.3390/molecules23061445 DOI: https://doi.org/10.3390/molecules23061445
11. Ministry of Health Republic Indonesia. Indonesian Herbal Pharmacopoeia Edition II: Supplement I. Jakarta: Ministry of Health Republic Indonesia; 2022.
12. Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle IO, Oseghale IO, Imieje VO, Erharuyi O, Falodun A. Evaluation of the antioxidant and hypoglycaemic potentials of the leaf extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019; 3(5):170-174. doi: 10.26538/tjnpr/v3i5.4. DOI: https://doi.org/10.26538/tjnpr/v3i5.4
13. Iheanacho CM, Akubuiro PC, Oseghale IO, Imieje VO, Erharuyi O, Ogbeide KO, Jideonwo AN, Falodun A. Evaluation of the antioxidant activity of the stem bark extracts of Anacardium occidentale (Linn) Anacardiaceae. Trop J Phytochem Pharm Sci. 2023; 2(2):65-69. Doi: 10.26538/tjpps/v2i2.4. DOI: https://doi.org/10.26538/tjpps/v2i2.4
14. Mutiah R, Rachmawati E, Fitrianingsih AA, Zahiro SR. Metabolite profiling of anticancer compounds in Saussure lappa based on UPLC-QToFMS/MS. Pharm Educ. 2023; 23(4):37-42. Doi: 10.46542/pe.2023.234.3742 DOI: https://doi.org/10.46542/pe.2023.234.3742
15. Pujiawati Y, Khotijah L, Wiryawan IKG. Screening of antioxidant activities and their bioavailability of tropical plants. IOP Conf Ser Earth Environ Sci. 2023; 1182:1-5. Doi: 10.1088/1755-1315/1182/1/012083 DOI: https://doi.org/10.1088/1755-1315/1182/1/012083
16. Christina YI, Nafisah W, Widodo, Rifa’i M, Djati MS. Evaluation of total phenolic, flavonoid contents, antioxidant and cytotoxicity activities
of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. IOP Conf Ser Earth Environ Sci. 2021; 743:1-7. Doi: 10.1088/1755-1315/743/1/012026 DOI: https://doi.org/10.1088/1755-1315/743/1/012026
17. Maury GL, Rodríguez DM, Hendrix S, Arranz JCE, Boix YF, Pacheco AO, Díaz JG, Morris-Quevedo HJ, Dubois AF, Aleman EI, Beenaerts N, Méndez-Santos IE, Ratón TO, Cos P, Cuypers A. Antioxidants in plants: a valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants. 2020; 9(11):1-36. Doi: 10.3390/antiox9111048 DOI: https://doi.org/10.3390/antiox9111048
18. Kruk J, Aboul-Enein BH, Duchnik E, Marchlewicz. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J Physion Sci. 2022; 19:1-24. Doi: 10.1186/s12576-022-00845-1 DOI: https://doi.org/10.1186/s12576-022-00845-1
19. Sirin S, Dolanbay SN, Aslim B. Role of plant derived alkaloids as antioxidant agents for neurodegenerative diseases. Health Sci Rev. 2023; 6:1-11. Doi: 10.1016/j.hsr.2022.100071 DOI: https://doi.org/10.1016/j.hsr.2022.100071
20. Gutiérrez-Del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F. Terpenoids and Polyphenols as natural antioxidant agents in food preservation. Antioxidants. 2021; 10(8):1-33. Doi: 10.3390/antiox10081264 DOI: https://doi.org/10.3390/antiox10081264
21. Hassanpour SH, Doroudi A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J Phytomed. 2023; 13(4):354-376. Doi: 10.22038/AJP.2023.21774
22. Mata-Espinosa D, Molina-Salinas GM, Barrios-Payán J, Navarrete-Vázquez G, Marquina B, Ramos-Espinosa O, Bini EI, Baeza I, Hernández-Pando R. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm Pharmacol Ther. 2015; 32:7-14. Doi: 10.1016/j.pupt.2015.03.004 DOI: https://doi.org/10.1016/j.pupt.2015.03.004
23. Liu K, Chen Q, Luo H, Li R, Chen L, Jiang B, Liang Z, Wang T, Ma Y, Zhao M. An in vitro catalysis of tea polyphenols by polyphenol oxidase. Molecules. 2023; 28(4):1-22. Doi: 10.3390/molecules28041722 DOI: https://doi.org/10.3390/molecules28041722
24. Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The roles of gibberellins in regulating leaf development. Plants. 2023; 12(6):1-19. Doi: 10.3390/plants12061243 DOI: https://doi.org/10.3390/plants12061243
25. Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological properties, biological activities and therapeutic potential. Molecules. 2025; 30(3):1-34. Doi: 10.3390/molecules30030654 DOI: https://doi.org/10.3390/molecules30030654
26. Duta-Bratu CG, Nitulescu GM, Mihai DP, Olaru OT. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications. Plants. 2023; 12(16):1-16. Doi: 10.3390/plants12162935 DOI: https://doi.org/10.3390/plants12162935
27. Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. J Pharm. 2014; 2014:1-10. Doi: 10.1155/2014/801820 DOI: https://doi.org/10.1155/2014/801820
28. Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014; 19(10):16240-16265. Doi: 10.3390/molecules191016240 DOI: https://doi.org/10.3390/molecules191016240
29. Molina J, de Guzman RC, Abzalimov R, Huang W, Guruprasad A, Pedales R, Wicaksono A, Davis D, Callado JR, Bänziger H, Suksathan P, Eaton W, Yin P, Bürger M, Erickson M, Jones S, Adams J, Pell S. Microbes and metabolites of a plant-parasite interaction: Deciphering the ecology of Tetrastigma host choice in the world’s largest parasitic flower, Rafflesia. Curr Plant Biol. 2025; 42:1-16. Doi:
10.1016/j.cpb.2025.100456 DOI: https://doi.org/10.1016/j.cpb.2025.100456
30. Molina J, Nikolic D, Jeevarathanam JR, Abzalimov R, Park EJ, Pedales R, Mojica EE, Tandang D, McLaughlin W, Wallick K, Adams J, Novy A, Pell SK, van Breemen RB, Pezzuto JM. Living with a giant, flowering parasite: metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae) shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation. Planta. 2021; 255(1):1-12. Doi: 10.1007/s00425-021-03787-x DOI: https://doi.org/10.1007/s00425-021-03787-x
31. Wang Y, Mostafa S, Zeng W, Jin B. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. Int J Mol Sci. 2021; 22:1-26. Doi: 10.3390/ijms22168568 DOI: https://doi.org/10.3390/ijms22168568
32. Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front Plant Sci. 2021; 12:1-22. Doi: 10.3389/fpls.2021.621276 DOI: https://doi.org/10.3389/fpls.2021.621276
33. Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A, Singh RP, Meena RS, Behera TK. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022; 23(5):1-24. Doi: 10.3390/ijms23052690 DOI: https://doi.org/10.3390/ijms23052690
34. Serdo DF. Insects' perception and behavioral responses to plant semiochemicals. PeerJ. 2024; 12:1-20. Doi: 10.7717/peerj.17735 DOI: https://doi.org/10.7717/peerj.17735
35. Anastassova N, Stefanova D, Hristova-Avakumova N, Georgieva I, Kondeva-Burdina M, Rangelov M, Todorova N, Tzoneva R, Yancheva D. New indole-3-propionic acid and 5-methoxy-indole carboxylic acid derived hydrazone hybrids as multifunctional neuroprotectors. Antioxidants. 2023; 12(4):1-33. Doi: 10.3390/antiox12040977 DOI: https://doi.org/10.3390/antiox12040977
36. Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O'Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017; 22(1):25-37. Doi: 10.1016/j.chom.2017.06.007 DOI: https://doi.org/10.1016/j.chom.2017.06.007
37. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. Ann Transl Med. 2015; 3(10):1-12. Doi: 10.3978/j.issn.2305-5839.2015.03.61
38. Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules. 2023; 28(4):1-43. Doi: 10.3390/molecules28041845 DOI: https://doi.org/10.3390/molecules28041845
39. Bin Jardan YA, Ansari MA, Raish M, Alkharfy KM, Ahad A, Al-Jenoobi FI, Haq N, Khan MR, Ahmad A. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. Biomed Res Int. 2020; 2020:1-10. Doi: 10.1155/2020/3921796 DOI: https://doi.org/10.1155/2020/3921796
40. Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. Explor Target Antitumor Ther. 2021; 2(4):323-354. Doi: 10.37349/etat.2021.00049 DOI: https://doi.org/10.37349/etat.2021.00049
41. Wang PG, Zhou W. Rapid determination of cocamidopropyl betaine impurities in cosmetic products by core-shell hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr. 2016; 1461-78-83. Doi: 10.1016/j.chroma.2016.07.056 DOI: https://doi.org/10.1016/j.chroma.2016.07.056
42. Lin SX, Curtis MA, Sperry J. Pyridine alkaloids with activity in the central nervous system. Bioorg Med Chem. 2020; 28(24):1-20. Doi: 10.1016/j.bmc.2020.115820 DOI: https://doi.org/10.1016/j.bmc.2020.115820
43. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules. 2022; 27(9):1-24. Doi: 10.3390/molecules27092901 DOI: https://doi.org/10.3390/molecules27092901
44. Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological effects and underlying mechanisms of licorice-derived flavonoids. Evid Based Complement Alternat Med. 2022; 2022:1-25. Doi: 10.1155/2022/9523071 DOI: https://doi.org/10.1155/2022/9523071
45. Ren J, Li Z, Li X, Yang L, Bu Z, Wu Y, Li Y, Zhang S, Meng X. Exploring the Mechanisms of the antioxidants BHA, BHT, and TBHQ in hepatotoxicity, nephrotoxicity, and neurotoxicity from the perspective of network toxicology. Foods. 2025; 14(7):1-21. Doi: 10.3390/foods14071095 DOI: https://doi.org/10.3390/foods14071095
46. Chellian R, Pandy V, Mohamed Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. Phytomedicine. 2017; 32:41-58. Doi: 10.1016/j.phymed.2017.04.003 DOI: https://doi.org/10.1016/j.phymed.2017.04.003
47. Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev. 2021; 2021:1-36. Doi: 10.1155/2021/3268136 DOI: https://doi.org/10.1155/2021/3268136
48. Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant powerhouses and their role in nanomedicine. Antioxidants. 2024; 13(8):1-26. Doi: 10.3390/antiox13080922 DOI: https://doi.org/10.3390/antiox13080922
49. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem. 2015; 101:295-312. doi: 10.1016/j.ejmech.2015.06.026. DOI: https://doi.org/10.1016/j.ejmech.2015.06.026
50. Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2015; 5(2):129-151. Doi: 10.1007/s13205-014-0220-2 DOI: https://doi.org/10.1007/s13205-014-0220-2
51. Wicaksono A, Mursidawati S, Molina J. A plant within a plant: Insights on the development of the Rafflesia endophyte within its host. Bot Rev. 2021; 87(2):233–242. Doi: 10.1007/s12229-020-09236-w DOI: https://doi.org/10.1007/s12229-020-09236-w
52. Susatya A, Lestari D, Mahyuni R, Kusuma YWC, Dalimunthe SH, Nurchayati N, Ardiyansyah F, As’ari H. Morphological variation and distribution of a newly recorded Rafflesia zollingeriana. J Trop Forest Sci. 2023; 35(4):465–475. Doi: 10.26525/jtfs2023.35.4.465 DOI: https://doi.org/10.26525/jtfs2023.35.4.465
53. Lestari D, Susatya A. Morphological variation of Rafflesia zollingeriana Koord. and its recent distribution in East Java, Indonesia. Biosaintifika J Biol Biol Educ. 2022; 14(1):117-124 Doi: 10.15294/biosaintifika.v14i1.33089 DOI: https://doi.org/10.15294/biosaintifika.v14i1.33089
54. Ali M, Cheng Z, Ahmad H, Hayat S. Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ROS employed by crops against Verticillium dahliae wilts. J. Plant Interact. 2018; 13(1):353–363. Doi: 10.1080/17429145.2018.1484188 DOI: https://doi.org/10.1080/17429145.2018.1484188


