Green Synthesis of Silver Nanoparticles from Tribulus terrestris and Investigation of Their Antioxidant and Anticancer Activities against MG-63 Osteosarcoma Cells
Main Article Content
Abstract
The increasing interest in green nanotechnology has led to the use of medicinal plants for synthesizing nanoparticles with bio-medical applications. This study focuses on synthesizing silver nanoparticles (AgNPs) using the aqueous leaf extract of Tribulus terrestris, aiming to evaluate their anti-oxidant, enzyme inhibitory and anti-cancer activities. The synthesis was confirmed through UV-Vis spectroscopy, where the plant extract showed a peak at 282 nm and AgNPs exhibited a surface plasmon resonance peak at 430 nm. Fourier Transform Infrared (FTIR) spectroscopy revealed functional groups of plant extract as -OH, -C=O and -NH, which were involved in the stabilization and reduction of the AgNPs. X-ray diffraction (XRD) confirmed the nanoparticles as crystal in nature, while Scanning Electron Microscopy (SEM) showed their spherical morphology. Dynamic Light Scattering (DLS) demonstrated good nanoparticle stability. Biological testing revealed significant anti-oxidant activity, with DPPH (78.27%), ABTS (76.55%) and iron chelation (79.74%) at 640 µg/mL. Enzyme inhibition assays showed high inhibition of polyphenol oxidase (91.99%) and peroxidase (98.74%). The AgNPs also exhibited promising anti-cancer potential, with a 78.34% reduction in MG-63 osteosarcoma cell viability at 80 µg/mL Gene expression analysis revealed upregulation of Caspase 9 and Bax and downregulation of Bcl-2, suggesting an apoptotic pathway in the cancer cells. In conclusion, T. terrestris synthesized AgNPs show great promise for use in therapeutic applications, particularly in cancer treatment.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Saritha P, Arunprakash S, Srinivasan P, Al‐Ansari MM, Singh S, Dixit S. Luminescent Silver Nanoparticles Biosynthesis Using Couroupita guianensis Flower Extract: Antibacterial and Anticancer Potential. Luminescence. 2024; 39(11): e70005. DOI: https://doi.org/10.1002/bio.70005
2.Shahzadi S, Fatima S, Shafiq Z, Janjua MR. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 2025; 15(5): 3858-3903. DOI: https://doi.org/10.1039/D4RA07519F
3.Mathanmohun M, Sagadevan S, Rahman MZ, Lett JA, Fatimah I, Moharana S, Garg S, Al-Anber MA. Unveiling sustainable, greener synthesis strategies and multifaceted applications of copper oxide nanoparticles. J Mol Struct. 2024; 1305: 137788. DOI: https://doi.org/10.1016/j.molstruc.2024.137788
4.Yadav S, Mali SN, Pandey A. Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation. Biol Trace Elem Res. 2024; 202 (11): 1-20. DOI: https://doi.org/10.1007/s12011-024-04446-4
5.Navaneethan RD, NCJ PL, Ramaiah M, Ravindran R, Chinnathambi A, Alharbi SA, Sivagnanam A, Mohemedibrahim PK. Caralluma pauciflora based Ag-NPs activate ROS-induced apoptosis through down-regulation of AKT, mTOR and pI3K signaling in human Gastric Cancer (AGS) cells. Nanotechnology. 2024; 35(19): 195102. https://doi.org/10.1088/1361-6528/ad26d9 DOI: https://doi.org/10.1088/1361-6528/ad26d9
6.Parvin SJ, Vijaya T. A review on tribulus terrestris: Insights into its medicinal properties and applications. Sustainable Innovations in Life Sciences: Integ Ecol Nanotechnol Toxicol. 2024, ISBN-13 (15): 1-7. https://doi.org/10.70593/978-81-982935-0-3_1 DOI: https://doi.org/10.70593/978-81-982935-0-3_1
7.Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, Abd El-Monaem EM, Mohamed IM, Badr MM, Ihara I, Rooney DW, Yap PS. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ Chem Lett. 2024; 22(2): 841-887. DOI: https://doi.org/10.1007/s10311-023-01682-3
8.Duman H, Eker F, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomater. 2024; 14(18): 1527. DOI: https://doi.org/10.3390/nano14181527
9.Darji SA, Tiwari P, Chandra A, Sharma A. Biological synthesis of nanoparticles from selected medicinal plants. Nanotechnol In Silico Tools, 2024: 47-59. https://doi.org/10.1016/B978-0-443-15457-7.00021-6 DOI: https://doi.org/10.1016/B978-0-443-15457-7.00021-6
10.Benjamin MA, Mokhtar RA, Iqbal M, Abdullah A, Azizah R, Sulistyorini L, Mahfudh N, Zakaria ZA. Medicinal Plants of Southeast Asia with Anti-α-Glucosidase Activity as Potential Source for Type-2 Diabetes Mellitus Treatment. J Ethnopharmacol. 2024; 330: 118239. DOI: https://doi.org/10.1016/j.jep.2024.118239
11.Sivalingam AM, Pandian A. Identification and characterization of silver nanoparticles from Erythrina indica and its antioxidant and Uropathogenic antimicrobial properties. Microb Pathog. 2024; 190: 106635. DOI: https://doi.org/10.1016/j.micpath.2024.106635
12.Gudkov SV, Burmistrov DE, Fomina PA, Validov SZ, Kozlov VA. Antibacterial Properties of Copper Oxide Nanoparticles. Int J Mol Sci. 2024; 25(21): 11563. DOI: https://doi.org/10.3390/ijms252111563
13.Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol. 2024; 54(3): 294-306.
14.Rana N, Banu AN, Kumar B, Singh SK, Abdel-Razik NE, Jalal NA, Bantun F, Vamanu E, Singh MP. Phytofabrication, characterization of silver nanoparticles using Hippophae rhamnoides berries extract and their biological activities. Front Microbiol. 2024;15:1399937. DOI: https://doi.org/10.3389/fmicb.2024.1399937
15.Bras BS, do Nascimento Pereira I, Zibordi LC, Rosatto PA, Santos HH, Granero FO, Figueiredo CC, de Faria ML, Ximenes VF, de Moraes RO, Santiago PS. Green synthesis of silver nanoparticles using food supplement from Avena sativa L., and their antioxidant, antiglycation, and anti-aging activities: In vitro and in silico studies. Food Bioprod Process. 2024; 147: 175-188. DOI: https://doi.org/10.1016/j.fbp.2024.06.013
16.Meydan I, Seckin H, Kocak Y, Okumus E, Bekmezci M, Sen F. Evaluation of antioxidant, antibacterial and thermal stability properties of silver nanoparticles synthesised with Infundibulicybe gibba extract. Int J Environ Sci Technol. 2024; 21: 6957-6966. DOI: https://doi.org/10.1007/s13762-024-06131-4
17.Li R, He M, Cui Y, Ji X, Zhang L, Lan X, Wang L, Han Z, Xiao H. Silver-palladium bimetallic nanoparticles stabilized by elm pod polysaccharide with peroxidase-like properties for glutathione detection and photothermal anti-tumor ability. Int J Biol Macromol. 2024; 264: 130673. DOI: https://doi.org/10.1016/j.ijbiomac.2024.130673
18.Fang Y, Li Y, Zhong X, Peng J. Formulation and characterization of a novel anti-human bone cancer supplement from silver nanoparticles green-synthesized using Allium sativum l. Leaf aqueous extract. Inorg Chem Commun. 2024; 168: 112979. DOI: https://doi.org/10.1016/j.inoche.2024.112979
19.Metwaly FE, Moghazy MA, Sheded MG, Mohamed AA. Green synthesis of silver nanoparticles using leaf extract of the hydrophyte Persicaria senegalensis: Preparation and antioxidant activity. Inorg Nano-Met Chem. 2024: 1-11. https://doi.org/10.1080/24701556.2024.2354504 DOI: https://doi.org/10.1080/24701556.2024.2354504
20.Telange DR, Mahajan NM, Mandale T, More S, Warokar A. Pongamia pinnata seed extract-mediated green synthesis of silver nanoparticle loaded nanogel for estimation of their antipsoriatic properties. Bioprocess Biosyst Eng. 2024; 47(8): 1409-1431. DOI: https://doi.org/10.1007/s00449-024-03058-5
21.Bharathi VU, Thambidurai S. Green synthesized chitosan-coated iron oxide nanocomposite using Cissus quadrangularis plant extract for antibacterial, antioxidant and anticancer applications. Inorg Chim Acta. 2024; 572: 122293. DOI: https://doi.org/10.1016/j.ica.2024.122293
22.Rehman G, Umar M, Shah N, Hamayun M, Ali A, Khan W, Khan A, Ahmad S, Alrefaei AF, Almutairi MH, Moon YS. Green synthesis and characterization of silver nanoparticles using Azadirachta indica seeds extract: in vitro and in vivo evaluation of anti-diabetic activity. Pharmaceuticals. 2023; 16(12): 1677. DOI: https://doi.org/10.3390/ph16121677
23.Palithya S, Gaddam SA, Kotakadi VS, Penchalaneni J, Challagundla VN. Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chem Lett Rev. 2021; 14(1): 137-152. DOI: https://doi.org/10.1080/17518253.2021.1876172
24.Hanisha R, Balaganapathy M, Eswar B, Kathirvelan P, Rajabathar JR, Siddiqui N, Dinakarkumar Y. Biogenic synthesis of silver nanoparticles using Spirulina maxima extract and their bactericidal activity. J Umm Al-Qura Uni Appl Sci. 2024. https://doi.org/10.1007/s43994-024-00203-4 DOI: https://doi.org/10.1007/s43994-024-00203-4
25.Asefian S, Ghavam M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotech. 2024; 24(1): 1-22. https://doi.org/10.1186/s12896-023-00828-z DOI: https://doi.org/10.1186/s12896-023-00828-z
26.Katta VK, Dubey RS. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater Today: Proc. 2021; 45: 794-798. DOI: https://doi.org/10.1016/j.matpr.2020.02.809
27.Giri VA, Sastry SV, Kapoor A. Biomass-assisted green synthesis and characterization of silver nanoparticles using Azadirachta indica, Ocimum basilicum, and Curcuma longa: evaluation of antifungal potential. Biomass Convers Biorefi. 2023: 1-15. https://doi.org/10.1007/s13399-023-05177-7 DOI: https://doi.org/10.1007/s13399-023-05177-7
28.Okka EZ, Tongur T, Aytas TT, Yılmaz M, Topel Ö, Sahin R. Green Synthesis and the formation kinetics of silver nanoparticles in aqueous Inula viscosa extract. Optik. 2023; 294: 171487. https://doi.org/10.1016/j.ijleo.2023.171487 DOI: https://doi.org/10.1016/j.ijleo.2023.171487
29.Kocazorbaz EK, Moulahoum H, Tut E, Sarac A, Tok K, Yalcin HT, Zihnioglu F. Kermes oak (Quercus coccifera L.) extract for a biogenic and eco-benign synthesis of silver nanoparticles with efficient biological activities. Environ Technol Innov. 2021; 24: 102067. DOI: https://doi.org/10.1016/j.eti.2021.102067
30.Tripathi N, Goshisht MK. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mat. 2022; 5(4): 1391-1463. DOI: https://doi.org/10.1021/acsabm.2c00014
31.Chandrasekaran M, Chinnaiyan U, Sivaprakasam S, Paramasivam S. Biogenic synthesis and characterization of silver nanoparticles using a combined leaf extract for anti-bacterial and biofilm inhibition properties. Trop J Nat Prod Res. 202; 9(3): 1089-1096.
32.Soheyli F, Hassani H, Darroudi M. Biosynthesis of selenium nanoparticles using Trigonella foenum-graecum L extract and examination of their photocatalytic and cytotoxic properties. Int J Environ Sci Technol. 2025; 22(2): 1017-1028. DOI: https://doi.org/10.1007/s13762-024-05853-9
33.Vijayakumar S, Divya M, Vaseeharan B, Chen J, Biruntha M, Silva LP, Duran-Lara EF, Shreema K, Ranjan S, Dasgupta N. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): a potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J Inorg Organomet Polym Mater. 2021; 31: 624-635. DOI: https://doi.org/10.1007/s10904-020-01713-4
34.Tahir H, Rashid F, Ali S, Summer M, Afzal M. Synthesis, characterization, phytochemistry, and therapeutic potential of Azadirachta indica conjugated silver nanoparticles: a comprehensive study on antidiabetic and antioxidant properties. Biol Trace Elem Res. 2024; 203: 2170-2185. DOI: https://doi.org/10.1007/s12011-024-04293-3
35.Pramasari N, Anjani AG, Muslikh FA, Lestari TP, Shoviantari F, Septyaningrum SD, Melati IS, Randy GY. Green synthesis, optimization and characterization of carrot extract silver nanoparticles. Trop J Nat Prod Res. 2024; 8(12): 9591-9595. DOI: https://doi.org/10.26538/tjnpr/v8i12.35
36.Gecer EN, Erenler R, Temiz C, Genc N, Yildiz I. Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Part Sci Technol. 2022; 40(1): 50-57.
37.Ashokkumar M, Palanisamy K, Ganesh Kumar A, Muthusamy C, Senthil Kumar KJ. Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. Artif Cells Nanomed Biotechnol. 2024; 52(1): 438-448. DOI: https://doi.org/10.1080/21691401.2024.2399938
38.Kumari SA, Patlolla AK, Madhusudhanachary P. Biosynthesis of silver nanoparticles using Azadirachta indica and their antioxidant and anticancer effects in cell lines. Micromachines. 2022; 13(9): 1416. https://doi.org/10.3390/mi13091416 DOI: https://doi.org/10.3390/mi13091416
39.Gecer EN, Erenler R, Temiz C, Genc N, Yildiz I. Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Particul Sci Technol. 2022; 40(1): 50-57. DOI: https://doi.org/10.1080/02726351.2021.1904309
40.González-Pedroza MG, Argueta-Figueroa L, García-Contreras R, Jiménez-Martínez Y, Martínez-Martínez E, Navarro-Marchal SA, Marchal JA, Morales-Luckie RA, Boulaiz H. Silver nanoparticles from Annona muricata peel and leaf extracts as a potential potent, biocompatible and low cost antitumor tool. Nanomater. 2021; 11(5): 1273. DOI: https://doi.org/10.3390/nano11051273
41.Jain A, Jangid T, Jangir RN, shankar Bhardwaj G. A Comprehensive Review on the Antioxidant Properties of Green Synthesized Nanoparticles: in vitro and in vivo Insights. Free Radic Antioxid. 2024; 14(2): 34-61. DOI: https://doi.org/10.5530/fra.2024.2.6
42.El-Ansary AE, Omran AA, Mohamed HI, El-Mahdy OM. Green synthesized silver nanoparticles mediated by Fusarium nygamai isolate AJTYC1: characterizations, antioxidant, antimicrobial, anticancer, and photocatalytic activities and cytogenetic effects. Environ Sci Pollut Res. 2023; 30(45): 100477-100499. DOI: https://doi.org/10.1007/s11356-023-29414-8
43.Shaniba VS, Aziz AA, Joseph J, Jayasree PR, Manish Kumar PR. Synthesis, characterization and evaluation of antioxidant and cytotoxic potential of Annona muricata root extract-derived biogenic silver nanoparticles. J Clust Sci. 2022; 33: 467-483. DOI: https://doi.org/10.1007/s10876-021-01981-1
44.Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol. 2024; 54(3): 294-306. DOI: https://doi.org/10.1080/10826068.2023.2230496
45.Dara PK, Mahadevan R, Digita PA, Visnuvinayagam S, Kumar LR, Mathew S, Ravishankar CN, Anandan RJ. Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): In vitro studies on antioxidant and antibacterial applications. SN Appl Sci. 2020; 2: 665. https://doi.org/10.1007/s42452-020-2261-y DOI: https://doi.org/10.1007/s42452-020-2261-y
46.Das D, Ghosh R, Mandal P. Biogenic synthesis of silver nanoparticles using S1 genotype of Morus alba leaf extract: characterization, antimicrobial and antioxidant potential assessment. SN Appl Sci. 2019; 1: 498. https://doi.org/10.1007/s42452-019-0527-z DOI: https://doi.org/10.1007/s42452-019-0527-z
47.Macovei I, Harabagiu V, Burlec AF, Mircea C, Horhogea CE, Rimbu CM, Săcărescu L, Panainte AD, Miron A, Hăncianu M, Nechita C. Biosynthesis of Silver and Gold Nanoparticles Using Geum urbanum L. Rhizome Extracts and Their Biological Efficiency. J Inorg Organomet Polym. Mater. 2024; 34(12): 5831-5853. DOI: https://doi.org/10.1007/s10904-024-03189-y
48.Kumari P, Azad C, Kumar RR, Kumari J, Aditya K, Kumar A. Defense inducer compounds up-regulated the peroxidase, polyphenol oxidase, and total phenol activities against spot blotch disease of wheat. Plant Pathol J. 2023; 39(2):159. DOI: https://doi.org/10.5423/PPJ.OA.06.2022.0080
49.Iori V, Muzzini VG, Venditti I, Casentini B, Iannelli MA. Phytotoxic impact of bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on chronically exposed callus cultures of Populus nigra L. Environ Sci Pollut Res. 2023; 30(54): 116175-116185. DOI: https://doi.org/10.1007/s11356-023-30690-7
50.Kilic HK, Cakmakci T, Sensoy S. The application of nanoparticles on the physiological, morphological, enzyme activities, and nutrient uptake of lettuce under different irrigation regimes. Enviro Dev Sustain. 2025: 1-25. https://doi.org/10.1007/s10668-025-06120-8 DOI: https://doi.org/10.1007/s10668-025-06120-8
51.Mawale KS, Praveen A, Giridhar P. Efficacy of copper and silver nanoparticles on seedling growth, biochemical and antioxidant potential of Capsicum annuum L., in vitro and ex vitro. S Afr J Bot. 2024; 175: 1-14. DOI: https://doi.org/10.1016/j.sajb.2024.09.057
52.Shousha WG, Aboulthana WM, Salama AH, Saleh MH, Essawy EA. Evaluation of the biological activity of Moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bull Nat Res Cent. 2019; 43(1): 212-225. DOI: https://doi.org/10.1186/s42269-019-0221-8
53.Nagime PV, Shaikh NM, Shaikh SB, Lokhande CD, Patil VV, Shafi S, Syukri DM, Chidrawar VR, Kumar A, Singh S. Facile synthesis of silver nanoparticles using Calotropis procera leaves: unraveling biological and electrochemical potentials. Discover Nano. 2024; 19(1): 139. https://doi.org/10.1186/s11671-024-04090-w DOI: https://doi.org/10.1186/s11671-024-04090-w
54.Khandare K, Kumar S, Sharma SC, Goswami S. Green synthesis of silver nanoparticles from supercritical CO2 mediated Lagerstroemia speciosa extract: Characterization, antimicrobial and antibiofilm activity. Biochem Biophys Res Commun. 2024; 739: 150967. DOI: https://doi.org/10.1016/j.bbrc.2024.150967
55.Hao P, Yang L, Yan Y, Wang X, Yin J, Hong W, Wang S, Yin X, Liu S. Metal-based nanocomposites for immunotherapy of osteosarcoma. Adv Compos Hybrid Mater. 2024; 7(6): 200. https://doi.org/10.1007/s42114-024-01030-1 DOI: https://doi.org/10.1007/s42114-024-01030-1
56.Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnol. 2023; 21(1): 103-130. DOI: https://doi.org/10.1186/s12951-023-01826-1
57.Tripathi S, Mahra S, Sharma S, Mathew S, Sharma S. Interaction of Silver Nanoparticles with Plants: A Focus on the Phytotoxicity, Underlying Mechanism, and Alleviation Strategies. Plant Nano Biol. 2024; 9: 100082. DOI: https://doi.org/10.1016/j.plana.2024.100082
58.Katarzyńska-Banasik D, Kowalik K, Sechman A. Influence of silver nanoparticles on mRNA expression of thyroid hormone-related genes in the thyroid gland and liver of laying hens. Domest Anim Endocrinol. 2024; 86: 106820. DOI: https://doi.org/10.1016/j.domaniend.2023.106820


