Effect of Processing Method on Fatty Acid Composition and Characteristics of Patin Fish (Pangasius micronemus) Oil

Main Article Content

Aprilia Kusbandari
Abdul Rohman
Ronny Martien
Lily Arsanti Lestari

Abstract

Patin fish (Pangasius micronemus) oil is rich in beneficial nutrients, including omega-3 and omega-6 fatty acids, vitamins A and D, antioxidants, high-density lipoproteins, polyunsaturated fatty acids, and monounsaturated fatty acids. This study aimed to investigate the impact of a 2% blend of activated charcoal and bentonite on the physicochemical characteristics and fatty acid profile of Patin fish oil sourced from different regions of Java. The Patin fish oil was extracted using the dry rendering method with mechanical pressure, followed by purification with a 2% bentonite and activated charcoal mixture. The oil was subjected to chemical characterization, the parameters evaluated included acid value, saponification value, iodine value, peroxide value, and fatty acid profile. Results indicated that the use of a 2% mixture of activated charcoal and bentonite reduced peroxide, acid, and saponification values, while increasing the iodine value. This method proved more effective than purification with either bentonite or activated charcoal alone. The main fatty acids found in Patin fish oil were oleic acid + eladinate, palmitic acid, linolelaidate, linoleate, stearic acid, myristic acid, palmitoleate, and lauric acid. The present extraction and purification approach offers a simple, cost-effective, and solvent-free method for fish oil processing, ensuring a high-quality product.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Aprilia Kusbandari, Doctoral Program in Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia 

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55166, Indonesia 

Abdul Rohman, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia 

Center of Excellence Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia 

How to Cite

Effect of Processing Method on Fatty Acid Composition and Characteristics of Patin Fish (Pangasius micronemus) Oil . (2025). Tropical Journal of Natural Product Research , 9(7), 3105 – 3113. https://doi.org/10.26538/tjnpr/v9i7.23

References

Anggraini E, Putra GB, Kurniawan R. Design of a Nodemcu-Based System for Monitoring and Controlling the Water Quality of Catfish Tarp Pond. IOP Conf. Ser. Earth Environ. Sci. 2024; 1419(1):012040. doi:10.1088/1755-1315/1419/1/012040. DOI: https://doi.org/10.1088/1755-1315/1419/1/012040

Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs. 2018; 16(8):256. doi:10.3390/md16080256. DOI: https://doi.org/10.3390/md16080256

Song G, Dai Z, Shen Q, Peng X, Zhang M. Analysis of the Changes in Volatile Compound and Fatty Acid Profiles of Fish Oil in Chemical Refining Process. Eur. J. Lipid Sci. Technol. 2017; 119(11):1700219. doi:10.1002/ejlt.201700219. DOI: https://doi.org/10.1002/ejlt.201700219

Ningsih SW, Lubis NA, Nasution GS. The Quality of Purified Eel Fish (Monopterus albus Zuieuw) Oil and Mackerel Tuna Fish (Euthynnus affinis) Oil. Humanist. Netw. Sci. Technol. 2024; 8(1):1–7. doi:10.33846/hn71201.

Sukmiwati M, Syahrul S, Dewita, Diharmi A. Characteristics of Softgel Capsules Mixture of Patin Oil, Red Palm Oil, and Shark Liver Oil. IOP Conf. Ser. Earth Environ. Sci. 2020; 430(1):012008. doi:10.1088/1755-1315/430/1/012008. DOI: https://doi.org/10.1088/1755-1315/430/1/012008

Noreen S, Anmol S, Fatima S, Sattar R, Yameen Z, Arshad S, Khan AU, Pane YS. Emerging Role of Polyunsaturated Fatty Acids (PUFAs) on Human Brain Development and Neurological Diseases: A Systematic Review. Trop. J. Nat. Prod. Res. 2024; 8(12):9363–9369. doi:10.26538/tjnpr/v8i12.3. DOI: https://doi.org/10.26538/tjnpr/v8i12.3

Barry AR, Dixon DL. Omega-3 Fatty Acids for the Prevention of Atherosclerotic Cardiovascular Disease. Pharmacotherapy. 2021; 41(12):1056–1065. doi:10.1002/phar.2615. DOI: https://doi.org/10.1002/phar.2615

Daci A, Celik Z, Ozen G, Dashwood M, Dogan BSU, Topal G. Effect of Omega-3 Polyunsaturated Fatty Acids in Modulation of Vascular Tone Under Physiological and Pathological Conditions. Eur. J. Pharm. Sci. 2020; 153:105499. doi:10.1016/j.ejps.2020.105499. DOI: https://doi.org/10.1016/j.ejps.2020.105499

Wafa R, Agustini T, Fahmi A. Drying Kinetics and Study of Physical Characteristic Using Image Analysis of Dried Salted Striped Catfish (Pangasius hypophthalmus). IOP Conf. Ser. Earth Environ. Sci. 2021; 750(1):012045. doi:10.1088/1755-1315/750/1/012045. DOI: https://doi.org/10.1088/1755-1315/750/1/012045

Suseno SH, Rizkon AK, Jacoeb AM, Nurjanah N, Supinah P. Extraction with Dry Rendering Method and Characterization of Fish Oil By-Product of Pangasius Fillet Industries in Lampung. Indones. J. Aquat. Prod. Technol. 2020; 23(1):38–46. doi:10.17844/jphpi.v23i1.30722.

Pandiangan M. Determination of Fatty Acid Composition in Iridescent Shark Fish Oil. J. Ris. Teknol. Pang. Has. Pertan. 2021; 1(2):76–82. doi:10.54367/retipa.v1i2.1210. DOI: https://doi.org/10.54367/retipa.v1i2.1210

Al-Obaidi WML, Al-Izzi MHM. Effect of Different Types of Omega-3 Fish Oil on the Physiological, Biochemical and Immunological Parameters in Male Rabbits. Trop. J. Nat. Prod. Res. 2021; 5(3):434–439. doi:10.26538/tjnpr/v5i3.3. DOI: https://doi.org/10.26538/tjnpr/v5i3.3

Hansson GK, Back M. Omega-3 Fatty Acids, Cardiovascular Risk, and the Resolution of Inflammation. FASEB J. 2019; 33(2):1536–1539. doi:10.1096/fj.201802445R. DOI: https://doi.org/10.1096/fj.201802445R

Marton LT, Goulart RDA, Cassio A, Carvalho A De. Omega Fatty Acids and Inflammatory Bowel Diseases: An Overview. Int. J. Mol. Sci. 2019; 20(19):4851. doi:10.3390/ijms20194851. DOI: https://doi.org/10.3390/ijms20194851

Fathony SY, Handajani F, Rahayu IN. The Effect of Patin Fish Oil Extract on LDL Cholesterol Levels Rattus norvegicus Was Induced by Alloxan. J. Wijaya Kusuma. 2022; 11(2):116–124. doi:10.30742/jikw.v11i2.1877. DOI: https://doi.org/10.30742/jikw.v11i2.1877

Bowen KJ, Harris WS, Kris-Etherton PM. Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits? Curr. Treat. Options Cardiovasc. Med. 2016; 18(69):2–16. doi:10.1007/s11936-016-0487-1. DOI: https://doi.org/10.1007/s11936-016-0487-1

Elagizi A, Lavie CJ, Marshall K, Dinicolantonio JJ, Keefe JH, Milani RV. Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health: A Comprehensive Review. Prog. Cardiovasc. Dis. 2018; 61(1):76–85. doi:10.1016/j.pcad.2018.03.006. DOI: https://doi.org/10.1016/j.pcad.2018.03.006

Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish. A Review. Foods. 2022; 11(22):3669. doi:10.3390/foods11223669. DOI: https://doi.org/10.3390/foods11223669

Gaffari SM, Khoshnood Z. Comparative Study of the Fatty Acid Composition of Five Freshwater Fish Species from the Region of Dezful, Iran. Food Sci. Appl. Biotechnol. 2021; 4(1):57–62. doi:10.30721/fsab2021.v4.i1.115. DOI: https://doi.org/10.30721/fsab2021.v4.i1.115

Zhang Q, Wang W, Wu S, Zhong B, Peng B, Li J, Hu M, Tu Z. Changes in the Quality and Flavor Components of Snakehead Fish Oil During Refining. Food Sci. (China). 2023; 44(12):208–2Samsul ES, Supomo, Sa’adah H, Hafsari P, Bintoro RFA, Yulifitrianto, Fajriah S. Physicochemical Characterization and Fatty Acid Profile of Patin (Pangasius micronema) Fish Oil and Haruan (Channa striata) Fish Oil Cultivated in Samarinda. Rasayan J. Chem. 2024; 17(1):267–274. doi:10.31788/RJC.2024.1718728. DOI: https://doi.org/10.31788/RJC.2024.1718728

Putri AR, Rohman A, Setyaningsih W, Riyanto S. Determination of Acid, Peroxide, and Saponification Value in Patin Fish Oil by FTIR Spectroscopy Combined with Chemometrics. Food Res. 2020; 4(5):1758–1766. doi:10.26656/fr.2017.4(5).030.

Bonilla-Mendez JR, Hoyos-Concha JL. Methods of Extraction, Refining and Concentration of Fish Oil as a Source of Omega-3 Fatty Acids. Cienc. Tecnol. Agropecu. 2018; 19(3):645–668. doi:10.21930/rcta.vol19_num2_art:684. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684

Jamal J, Kadek NGA, Wulandari AS, Musnina WOS, Widodo A. Short Communication Effect of Solvent Type and Temperature Variation on Yield and Quality Parameters Method. Trop. J. Nat. Prod. Res. 2021; 5:1537–1541. doi:10.1088/1755-1315/1356/1/012023. DOI: https://doi.org/10.26538/tjnpr/v5i9.3

Syifa F, Hidayah N, Lukitaningsih E, Irnawati, Rohman A. Physicochemical Properties, Fatty Acid Composition and FTIR Spectra of Gabus (Channa striata) Fish Oil. Food Res. 2022; 6(2):219–224. doi:10.26656/fr.2017.6(2).197. DOI: https://doi.org/10.26656/fr.2017.6(2).197

Putri A, Rohman A, Setyaningsih W, Riyanto S. Determination of Acid, Peroxide, and Saponification Value in Patin Fish Oil by FTIR Spectroscopy Combined with Chemometrics. Food Res. 2020; 4(S2):339–346. doi:10.26656/fr.2017.4(S2).339. DOI: https://doi.org/10.26656/fr.2017.4(5).030

Putri A, Setyaningsih W, Fernandez CC, Palma M, Rohman A, Riyanto S. Optimization of Microwave-Assisted Fish Oil Extraction from Patin (Pangasius micronemus) Using Response Surface Methodology-Box Behnken Design (RSM-BBD). Pharm. Sci. Asia. 2023; 50(3):229–237. doi:10.29090/PSA.2023.03.23.492. DOI: https://doi.org/10.29090/psa.2023.03.23.492

Behrouz K, Rezaei M, Bahramifar N, Naghdi S. The Comparison of Some Eco-Friendly and Conventional Methods of Extracting Common Kilka Oil in Terms of Quantity and Quality. Ecopersia. 2023; 11(3):241–253. doi:10.22034/ecopersia.11.3.241.

Zhang Y, Sun Q, Liu S, Wei S, Xia Q, Ji H, Deng C, Hao J. Extraction of Fish Oil from Fish Heads Using Ultra-High Pressure Pre-Treatment Prior to Enzymatic Hydrolysis. Innov. Food Sci. Emerg. Technol. 2021; 70:102670. doi:10.1016/j.ifset.2021.102670. DOI: https://doi.org/10.1016/j.ifset.2021.102670

Ikhsan AN, Irnawati I, Lestari LA, Erwanto Y, Rohman A. Simultaneous Analysis of Patin Fish Oil (Pangasius micronemus) and Bandeng (Chanos chanos) Fish Oil Using FTIR Spectroscopy and Chemometrics. Food Res. 2022; 6(3):262–268. doi:10.26656/fr.2017.6(3).353. 16. doi:10.7506/spkx1002-6630-20220816-192. DOI: https://doi.org/10.26656/fr.2017.6(3).353

Rohim A, Estiasih T, Susilo B, Nisa FC. Extraction of Healthy Oils from Fish Viscera by Conventional and Advanced Technologies. Grasas Aceites. 2024; 75(2):e513. doi:10.3989/gya.0751231.1999. DOI: https://doi.org/10.3989/gya.0751231.1999

Aryani N, Suharman I, Heltonika B, Edison E, Diharmi A. Changes in the Fatty Acid Profile of Fish Oil Derived from Pangasius Catfish (Pangasianodon hypophthalmus) Processing Waste Due to Variations in Fish Size and Heating Temperatures. Food Res. 2023; 12:1255. doi:10.12688/f1000research.141714.2. DOI: https://doi.org/10.12688/f1000research.141714.2

Kamini, Suptijah P, Santoso J, Suseno HS. Extraction by Dry Rendering Methode and Characterization Fish Oil of Catfish (Pangasius hypopthalmus) Viscera Fat by Product of Smooked Fish Processing. Indones. J. Aquat. Prod. Technol. 2016; 19(3):196–203. doi:10.17844/jphpi.v19i3.14477. DOI: https://doi.org/10.17844/jphpi.v19i3.14477

Hidayah N, Indah, Lestari LA, Rohman A. Authentication Analysis of Milkfish Oil Treated with Activated Charcoal and Bentonite Using Fourier Transform Infrared Spectroscopy and Multivariate Data Analysis. Food Res. 2023; 7(5):21–28. doi:10.26656/fr.2017.7(5).1012. DOI: https://doi.org/10.26656/fr.2017.7(5).1012

Budiadnyani IGA, Dewi RN, Panjaitan FCA, Sayuti. Physicochemical and Fatty Acid Profile of Refined Tuna Fish Oil By-Product from Canning and Meal Fish Industries. Trends Sci. 2024; 21(5):7380. doi:10.48048/tis.2024.7380. DOI: https://doi.org/10.48048/tis.2024.7380

Suseno SH, Rizkon AK, Jacoeb AM, Nurjanah N, Supinah P. Extraction with Dry Rendering Method and Characterization of Fish Oil By-Product of Pangasius Fillet Industries in Lampung. Indones. J. Aquat. Prod. Technol. 2020; 23(1):38–46. doi:10.17844/jphpi.v23i1.30722. DOI: https://doi.org/10.17844/jphpi.v23i1.30722

Al-Shahery YJ, Alasady IN. Identification of Saturated and Unsaturated Fatty Acids Produced by Chlorella vulgaris as a Potential Candidate for Biodiesel Production. Trop. J. Nat. Prod. Res. 2021; 5(2):238–242. doi:10.26538/tjnpr/v5i2.4. DOI: https://doi.org/10.26538/tjnpr/v5i2.4

Ayeleso TB, Ayeni PO, Ayeleso AO, Ramachela K, Mukwevho E. Nutritional and Chemical Constituents of Different Cultivars of Sweet Potato (Ipomoea batatas L.) Grown in South Africa. Trop. J. Nat. Prod. Res. 2024; 8(2):6100–6107. doi:10.26538/tjnpr/v8i2.7. DOI: https://doi.org/10.26538/tjnpr/v8i2.7

AOAC. AOAC Official Methods: Oils and Fats. AOAC Int.; 2000.

Indah, Rohman A, Lestari LA. Physicochemical Characterization Refined Patin Fish Oil (Pangasius micronema) Using Bentonite and Activated Carbon. J. Food Pharm. Sci. 2022; 10(2):626–633. doi:10.22146/jfps.4682. DOI: https://doi.org/10.22146/jfps.4682

Partan RU, Hidayat R. Exploration of Seluang fish (Rasbora argyrotaenia) oil extraction methods by enzyme extraction and wet pressing with quality analysis. Aquaculture, Aquarium, Conservation and Legislation. 2020; 13(4).

Sasongko H, Nurrochmad A, Nugroho AE, Rohman A. Indonesian freshwater fisheries’ oil for health and nutrition applications: A narrative review. Food Res. 2022; 6(2). DOI: https://doi.org/10.26656/fr.2017.6(2).362

Seelig J, Seelig A. Protein stability-analysis of heat and cold denaturation without and with unfolding models. J. Phys. Chem. B 2023; 127(15). DOI: https://doi.org/10.1021/acs.jpcb.3c00882

Purnamayati L, Dito BS, Dewi EN, Suharto S. Optimization of tilapia (Oreochromis niloticus) viscera oil extraction using response surface methodology. Food Res. 2023; 7(3). DOI: https://doi.org/10.26656/fr.2017.7(S3).2

Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. 2021; 28(32). DOI: https://doi.org/10.1007/s11356-021-14989-x

Aida SN, Ridho R, Saleh E, Utomo AD, Nurhayati. Estimation of growth parameter on sailfin catfish (Pterygoplichthys pardalis) in Bengawan Solo River, Central Java Province. IOP Conf. Ser.: Earth Environ. Sci. 2021; 695(1). DOI: https://doi.org/10.1088/1755-1315/695/1/012027

Andriani Y, Cahya MD, Pratiwy FM, Harlina PW, Risdiana, Iskandar. Enhancing the growth performance of catfish (Clarias sp.) by the application of feed derived from fermented food waste. Aquac. Aquar. Conserv. Legis. 2023; 16(5).

Gharby S. Refining vegetable oils: Chemical and physical refining. Sci. World J. 2022; 2022. DOI: https://doi.org/10.1155/2022/6627013

Tagaev I, Muratova MN, Andriyko LS, Boykhonova MY. Characteristics of new promising bentonite coal sorbents modified by different compounds. Sci. Innov. 2021; 17(3). DOI: https://doi.org/10.15407/scine17.03.087

Kumari P, Verma S, Sharma U, Jha AK. Evaluation of Pb (II) removal from aqueous medium by bentonite and activated charcoal. Rasayan J. Chem. 2024; 17(4). DOI: https://doi.org/10.31788/RJC.2024.1748957

Smirnova DN, Grishin IS, Smirnov NN. Synthesis, structure and properties of bentonite - activated carbon composite. Proc. Higher Educ. Inst. Chem. Chem. Technol. 2024; 67(2). DOI: https://doi.org/10.6060/ivkkt.20246702.6903

Nadhiro U, Subekti S, Tjahjaningsih W, Patmawati. Quality characteristics of Bali sardinella (Sardinella lemuru) oil purified with bentonite as an adsorbent. IOP Conf. Ser.: Earth Environ. Sci. 2018; 137(1). DOI: https://doi.org/10.1088/1755-1315/137/1/012012

Sumartini, Supriyanto, Hastuti P. The characteristic of purified tilapia (Oreochromis niloticus) fish using active charcoal and bentonite on fillet waste by-product of PT Aquafarm Nusantara. J. Airaha. 2019; 8(2). DOI: https://doi.org/10.15578/ja.v8i02.128

Haryati K, Suseno SH, Nurjanah N. Sardine fish oil by centrifugation and adsorbent for emulsion. Indones. J. Aquat. Prod. Technol. 2017; 20(1). DOI: https://doi.org/10.17844/jphpi.v20i1.16437

Suseno SH, Tambunan JE, Ibrahim B, Izaki AF. Improving the quality of sardine oil (Sardinella sp.) from Pekalongan-Indonesia using centrifugation and adsorbents (attapulgite, bentonite and zeolite). Adv. J. Food Sci. Technol. 2014; 6(5). DOI: https://doi.org/10.19026/ajfst.6.85

Purnamayati L, Kurniasih RA. Thermal degradation kinetic study of Pangasius fish oil. IOP Conf. Ser.: Earth Environ. Sci. 2020; 530(1). DOI: https://doi.org/10.1088/1755-1315/530/1/012012

Mihaela Ivanova; Anamaria Hanganu; Raluca Dumitriu; Mihaela Tociu; Galin Ivanov; Cristina Stavarache; Liliana Popescu; Aliona Ghendov‑Mosanu; Rodica Sturza; Calin Deleanu; Nicoleta‑Aurelia Chira. Saponification value of fats and oils as determined from 1H-NMR data: The case of dairy fats. Foods 2022; 11(10). DOI: https://doi.org/10.3390/foods11101466

Folayan AJ, Anawe PAL, Aladejare AE, Ayeni AO. Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Rep. 2019; 5. DOI: https://doi.org/10.1016/j.egyr.2019.06.013

Fang Pan; Bingwen Wen; Xiaomei Wang; Xiaobo Ma; Jian Zhao; Chengliu Liu; Yanan Xu; Wei Dang. Effect of the chemical refining process on perilla seed oil composition and oxidative stability. J. Food Process. Preserv. 2019; 43(9). DOI: https://doi.org/10.1111/jfpp.14094

Ahmed W, Shabbir MA, Aadil RM, Zia MA. Quality assessment of used edible fats and oils by local vendors of Faisalabad. Pak. J. Agric. Sci. 2021; 58(6). DOI: https://doi.org/10.21162/PAKJAS/21.1200

Nguyen KA, Hennebelle M, Van Duynhoven JPM, et al. Mechanistic kinetic modelling of lipid oxidation in vegetable oils to estimate shelf-life. Food Chem. 2024; 433. DOI: https://doi.org/10.1016/j.foodchem.2023.137266

Nadia A, Subekti S, Manan A, Wahyudin P. The effectiveness of activated carbon as adsorbent in the oil purification process fish by-product of the fish canning industry. IOP Conf. Ser.: Earth Environ. Sci. 2020; 441(1). DOI: https://doi.org/10.1088/1755-1315/441/1/012151

Zhang X, Lin L, Chen Z, et al. Characterization of refined fish oil from small fish in Mauritania. Aquac. Fish. 2022; 7(6). DOI: https://doi.org/10.1016/j.aaf.2020.11.003

Ayu BIG, Soni H, Gofar IE. Characteristics of fish oil produced though madidihang fishmeal industry waste treatment (Thunnus albacares) using adsorbents. Russ. J. Agric. Socio-Econ. Sci. 2020; 3(99). DOI: https://doi.org/10.18551/rjoas.2020-03.08

Sasongko H, Cahyadi M, Sutarno S, Muslimah I. The effect of bentonite utilization on the physicochemical characterization of eel (Anguilla bicolor bicolor) oil by wet rendering. IOP Conf. Ser.: Earth Environ. Sci. 2023; 1200(1). DOI: https://doi.org/10.1088/1755-1315/1200/1/012048

Nagy K, Iacob BC, Bodoki E, Oprean R. Investigating the thermal stability of omega fatty acid-enriched vegetable oils. Foods 2024; 13(18). DOI: https://doi.org/10.3390/foods13182961