The Effect of Cowanin on ERK1/2 and p-ERK1/2 Protein Expression in T47D Breast Cancer Cells by The Western Blot Method
Main Article Content
Abstract
Breast cancer in Indonesia occupies the first position in cancer cases that cause death in women. Recent studies have shown that cowanin is effective as a cytotoxic by inhibiting T47D cell cycle regulation in the G0-G1 phase. This study was conducted to determine the effect of cowanin on signal transduction by looking at the expression of extracellular regulated kinase (ERK)1/2 and phosphorylated-ERK1/2 (p-ERK1/2) proteins. The treatments were divided into 3 groups: negative control, cowanin, and doxorubicin. The administration of cowanin is IC50 11.11 g/mL, and doxorubicin is 0.125 g/mL. The western blot steps include lysing cells and separating them by gel electrophoresis, transferring protein bands from gel to membrane, and detecting protein bands by adding antibodies that react with the substrate. Parameters that will be observed are surface area and protein density using ImageJ. The results showed that cowanin could affect the expression of the ERK1/2 protein by significantly reducing the area (p<0.05) and the protein density of the ERK1/2 protein band significantly (p<0.05) followed by the post hoc Duncan test, there was a difference in the effect from treatment. Cowanin suppresses the expression of the ERK1/2 protein, which inhibits replication by decreasing the area and density of the ERK1/2 protein.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
World Health Organisation. World Health Organisation: Cancer. World Health Organisation 2021.
Dee EC, Laversanne M, Bhoo-Pathy N, Ho FD V, Feliciano EJG, Eala MAB. Cancer incidence and mortality estimates in 2022 in southeast Asia: a comparative analysis. Lancet Oncol. 2025; 26:516–528. DOI: https://doi.org/10.1016/S1470-2045(25)00017-8
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209–249. DOI: https://doi.org/10.3322/caac.21660
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:1-36. DOI: https://doi.org/10.1038/s41392-024-01848-7
Zhang J, Sun M, Hao M, Diao K, Wang J, Li S. FAM53A Affects Breast Cancer Cell Proliferation, Migration, and Invasion in a p53-Dependent Manner. Front Oncol. 2019; 9:1–13. DOI: https://doi.org/10.3389/fonc.2019.01244
Kong T, Liu M, Ji B, Bai B, Cheng B, Wang C. Role of the Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway in Ischemia-Reperfusion Injury. Front Physiol. 2019; 10:1–10. DOI: https://doi.org/10.3389/fphys.2019.01038
Whyte J, Bergin O, Bianchi A, McNally S, Martin F. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res. 2009; 11(5):1–14. DOI: https://doi.org/10.1186/bcr2361
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. Mol. Biomed. 2025; 6:1-22. DOI: https://doi.org/10.1186/s43556-024-00239-2
Ingole S, Vasdev N, Tekade M, Gupta T, Pawar B, Mhatre M. Chapter 13 - Toxic effects of cancer therapies. In: Tekade RKBT-PH and TI in DR, editor. Advances Pharmaceutical Product Development and Research, Academic Press; 2024, p. 353–379. DOI: https://doi.org/10.1016/B978-0-443-15842-1.00004-1
Agu KC, Okolie NP, Falodun A, Engel-Lutz N. In vitro anticancer assessments of Annona muricata fractions and in vitro antioxidant profile of fractions and isolated acetogenin (15-acetyl guanacone). J. Canc. Res. Pr. 2018; 5:53-66. DOI: https://doi.org/10.1016/j.jcrpr.2017.12.001
Engel N, Oppermann C, Falodun A, Kragl U. Proliferative effects of five traditional Nigerian medicinal plant extracts on human breast and bone cancer cell lines. J Ethnopharmacol. 2011; 137: 1003-1010. DOI: https://doi.org/10.1016/j.jep.2011.07.023
Falodun A, Sheng-Xiang Q, Parkinson G, Gibbons S. Isolation and characterization of a new anticancer diterpenoid from Jatropha gossypifolia. Pharm Chem J 2012; 45:636-639. DOI: https://doi.org/10.1007/s11094-012-0693-4
Falodun A, Engel N, Kragl U, Nebe B, Langer P. Novel anticancer alkene lactone from Persea americana. Pharm Biol. 2013; 51: 700-706. DOI: https://doi.org/10.3109/13880209.2013.764326
Panthong K, Pongcharoen W, Phongpaichit S, Taylor WC. Tetraoxygenated xanthones from the fruits of Garcinia cowa. Phytochem. 2006; 67(10):999–1004. DOI: https://doi.org/10.1016/j.phytochem.2006.02.027
Husni E, Nahari F, Wirasti Y, Wahyuni FS. Cytotoxicity study of ethanol extract of the stem bark of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Asian Pac J Trop Biomed. 2015; 5(3):249–252. DOI: https://doi.org/10.1016/S2221-1691(15)30013-7
Hefni D, Sri F, Yerizel E, Arisanty D, Nofita L. Cowanin, a Cytotoxic Xanthone from Asam Kandis ( Garcinia cowa, Roxb.) Reduced Cell Migration and Induced Cell Cycle Arrest on T47D Human Cancer Cell. Int J Adv Sci Eng Inf Technol. 2020; 10(5):2164–2169. DOI: https://doi.org/10.18517/ijaseit.10.5.12502
Wahyuni FS, Triastuti DH, Arifin H. Cytotoxicity study of ethanol extract of the leaves of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Pharmacogn J. 2015; 7(6):369–371. DOI: https://doi.org/10.5530/pj.2015.6.9
Soleimani M, Sajedi N. Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53 -Independent Approach. Asian Pacific J Cancer Prev. 2020; 21:3697–3704. DOI: https://doi.org/10.31557/APJCP.2020.21.12.3697
Yamani LZ, Alsamman K, El-Masry OS. Optimizing Western blotting immunodetection: Streamlining antibody cocktails for reduced protocol time and enhanced multiplexing applications. Biol Methods Protoc. 2024; 9:1-8. DOI: https://doi.org/10.1093/biomethods/bpae077
Taylor SC, Posch A. The design of a quantitative western blot experiment. Biomed Res Int. 2014; 2014:1-8. DOI: https://doi.org/10.1155/2014/361590
Burdall SE, Hanby AM, Lansdown MRJ, Speirs V. Breast cancer cell lines: Friend or foe. Breast Cancer Res. 2003; 5(2):89–95. DOI: https://doi.org/10.1186/bcr577
Hidayat R, Patricia Wulandari. Western Blotting (WB) Technique Guideline for Separation and Isolation of Protein. Biosci Med J Biomed Transl Res. 2021; 5(2):359–372. DOI: https://doi.org/10.32539/bsm.v5i2.229
Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. 2002; 62(16):4592–4598.
Zampieri L, Bianchi P, Ruff P, Arbuthnot P. Differential modulation by estradiol of P-glycoprotein drug resistance protein expression in cultured MCF7 and T47D breast cancer cells. Anticancer Res. 2002; 22(4):2253–2259.
Ibrahim SRM, Mohamed GA, Elfaky MA, Al Haidari RA, Zayed MF, El-Kholy AAE. Garcixanthone A, a new cytotoxic xanthone from the pericarps of Garcinia mangostana. J Asian Nat Prod Res. 2019; 21(3):291–297. DOI: https://doi.org/10.1080/10286020.2017.1423058
Laksmiani NPL. Ethanolic extract of mangosteen (Garcinia mangostana) pericarp as sensitivity enhancer of doxorubicin on MCF-7 cells by inhibiting P-glycoprotein. Nusant Biosci. 2019; 11(1):49–55. DOI: https://doi.org/10.13057/nusbiosci/n110109
Akao Y, Nakagawa Y, Iinuma M, Nozawa Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int J Mol Sci. 2008; 9(3):355–370. DOI: https://doi.org/10.3390/ijms9030355
Chouni A, Paul S. A Comprehensive Review of the Phytochemical and Pharmacological Potential of an Evergreen Plant Garcinia cowa. Chem Biodivers. 2023;20(2):e202200910. DOI: https://doi.org/10.1002/cbdv.202200910


