Alpha-Glucosidase Inhibitory Activity and Analysis of Eleuthoside B from Eleutherine bulbosa Urb. Bulbs Purified Extract from Lampo Donggala, Central Sulawesi, Indonesia

Main Article Content

Syariful Anam
Yonelian Yuyun
Siti Nurhasana Tanaijo
Friska R. Langkoda
Yusriadi
Asriana Sultan
David Pakaya

Abstract

Diabetes mellitus is becoming a severe health problem with associated economic and societal impacts. Type 2 diabetes (T2D) is the most common, accounting for about 90% of all diabetes cases in the world, and the prevalence is projected to increase, reaching 643 and 783 million by 2030 and 2045, respectively. This disease is characterized by a diminished responsiveness of the liver and muscle cells to insulin, causing fluctuations in blood glucose levels. Bawang Dayak (Eleutherine bulbosa Urb.) is a traditional Indonesian medicinal plant proven to have many pharmacological properties, including antioxidant, and antidiabetic properties. Therefore, this study aimed to determine the α-glucosidase inhibitory activity, and phytochemical analysis of E. bulbosa Urb. Bulbs purified extract from Lampo Donggala, Central Sulawesi, Indonesia. The bulb extract of E. bulbosa Urb was assessed for its antidiabetic activity in vitro using the α-glucosidase inhibitory activity assay. Thin-layer chromatography (TLC) and high-performance liquid chromatography photodiode array (HPLC-PDA) detection were used to characterize the phytochemical composition and quantify the analytes, with Eleuthoside B as a marker compound. The purified extract exhibited potent α-glucosidase inhibitory activity with IC50 value of 5.29 mg/mL. Eleuthoside B was detected in the purified extract by TLC with Rf value of 0.71. A quantitative determination using HPLC-PDA yielded Eleuthoside B content of 34.7916 ± 0.16 mg/g extract. The study concluded that the purified extract from the bulb of E. bulbosa, sourced from Lampo Donggala, Central Sulawesi, possess α-glucosidase inhibitory activity, suggesting its potential as an antidiabetic agent.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Alpha-Glucosidase Inhibitory Activity and Analysis of Eleuthoside B from Eleutherine bulbosa Urb. Bulbs Purified Extract from Lampo Donggala, Central Sulawesi, Indonesia . (2025). Tropical Journal of Natural Product Research , 9(7), 3007 – 3012. https://doi.org/10.26538/tjnpr/v9i7.7

References

Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes Mellitus: Classification, Mediators, and Complications; A Gate to Identify Potential Targets for the Development of New Effective Treatments. Biomed Pharmacother. 2023; 168:115734. doi:10.1016/j.biopha.2023.115734 DOI: https://doi.org/10.1016/j.biopha.2023.115734

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. doi:10.1016/j.diabres.2021.109119 DOI: https://doi.org/10.1016/j.diabres.2021.109119

Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020; 21(17):6275. doi:10.3390/ijms21176275 DOI: https://doi.org/10.3390/ijms21176275

Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int J Mol Sci. 2021; 22(14):7644. doi:10.3390/ijms22147644 DOI: https://doi.org/10.3390/ijms22147644

Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med. 2022; 9:841928. doi:10.3389/fcvm.2022.841928 DOI: https://doi.org/10.3389/fcvm.2022.841928

Martiz RM, Kumari V B C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P A, Ramu R. Inhibition of Carbohydrate Hydrolyzing Enzymes by a Potential Probiotic Levilactobacillus brevis RAMULAB49 Isolated from Fermented Ananas comosus. Front Microbiol. 2023; 14:1190105. doi:10.3389/fmicb.2023.1190105 DOI: https://doi.org/10.3389/fmicb.2023.1190105

Rangel-Galván M, Pacheco-Hernández Y, Lozoya-Gloria E, Villa-Ruano N. Dietary Natural Products as Inhibitors of α-Amylase and α-Glucosidase: An Updated Review of Ligand-Receptor Correlations Validated by Docking Studies. Food Biosci. 2024; 62:105456. doi:10.1016/j.fbio.2024.105456 DOI: https://doi.org/10.1016/j.fbio.2024.105456

Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients. 2023; 15(19):4267. doi:10.3390/nu15194267 DOI: https://doi.org/10.3390/nu15194267

Zamani M, Nikbaf-Shandiz M, Aali Y, Rasaei N, Zarei M, Shiraseb F, Asbaghi O. The Effects of Acarbose Treatment on Cardiovascular Risk Factors in Impaired Glucose Tolerance and Diabetic Patients: A Systematic Review and Dose–Response Meta-Analysis of Randomized Clinical Trials. Front Nutr. 2023; 10:1084084. doi:10.3389/fnut.2023.1084084 DOI: https://doi.org/10.3389/fnut.2023.1084084

Atanasov AG, Zotchev SB, Dirsch VM. International Natural Product Sciences Taskforce. Natural Products in Drug Discovery: Advances and Opportunities. Nat Rev Drug Discov. 2021; 20(3):200-216. doi:10.1038/s41573-020-00114-z DOI: https://doi.org/10.1038/s41573-020-00114-z

Dirir AM, Daou M, Yousef AF, Yousef LF. A Review of α-Glucosidase Inhibitors from Plants as Potential Candidates for the Treatment of Type-2 Diabetes. Phytochem Rev. 2022; 21(4):1049-1079. doi:10.1007/s11101-021-09773-1 DOI: https://doi.org/10.1007/s11101-021-09773-1

Yin Z, Zhang W, Feng F, Zhang Y, Kang W. α-Glucosidase Inhibitors Isolated from Medicinal Plants. Food Sci Hum Wellness. 2014; 3(3-4):136-174. doi:10.1016/j.fshw.2014.11.003 DOI: https://doi.org/10.1016/j.fshw.2014.11.003

Bisht D, Owais M, Venkatesan K. Potential of Plant-Derived Products in the Treatment of Mycobacterial Infections. In: Ahmad I, Aqil F, Owais M, eds. Modern Phytomedicine. Wiley-VCH Verlag GmbH & Co. KGaA; 2006:293-311p. DOI: https://doi.org/10.1002/9783527609987.ch14

Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, Ern LY, Ashraf NA, Kit SW, Yee TS, Pichika MR, Gorain B, Kesharwani P. An Update on Natural Compounds in the Remedy of Diabetes Mellitus: A Systematic Review. J Tradit Complement Med. 2018; 8(3):361-376. doi:10.1016/j.jtcme.2017.08.012 DOI: https://doi.org/10.1016/j.jtcme.2017.08.012

Malviya N, Jain S, Malviya S. Antidiabetic Potential of Medicinal Plants. Acta Pol Pharm. 2010; 67(2):113-118.

Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the Plant-Derived Bioactive Substances as Antidiabetic Agent: An Extensive Review. Biomed Pharmacother. 2022; 152:113217. doi:10.1016/j.biopha.2022.113217 DOI: https://doi.org/10.1016/j.biopha.2022.113217

Fathurahman F, Nursanto J, Madjid A, Ramadanil R. Ethnobotanical Study of "Kaili Inde" Tribe in Central Sulawesi Indonesia. Emir J Food Agric. 2016; 28(5):337-347. doi:10.9755/ejfa.2015-06-463 DOI: https://doi.org/10.9755/ejfa.2015-06-463

Sun J, Liu B, Rustiami H, Xiao H, Shen X, Ma K. Mapping Asia Plants: Plant Diversity and a Checklist of Vascular Plants in Indonesia. Plants (Basel). 2024; 13(16):2281. doi:10.3390/plants13162281 DOI: https://doi.org/10.3390/plants13162281

Anam S, Akhmad K, Nurdinah, Nur’afia, Yonelian Y. Standardization of Eleutherine bulbosa Urb. Bulbs Extract from Lampo, Donggala, Central Sulawesi. JST (Jurnal Sains dan Teknologi). 2023; 12(1):29-34. doi:10.22487/25411969.2023.v12.i1.16146

Kuntorini E, Astuti M, Nugroho LH. Anatomical Structure and Antioxidant Activity of Dayak Onion Bulbs (Eleutherine americana Merr.) From South Kalimantan. Berk Penel Hayati (J Biol Res). 2010; 16(1):1-6. doi:10.23869/bphjbr.16.1.20101 DOI: https://doi.org/10.23869/bphjbr.16.1.20101

Kusuma IW, Arung ET, Rosamah E, Purwatiningsih S, Kuspradini H, Syafrizal, Astuti J, Kim YU, Shimizu K. Antidermatophyte and Antimelanogenesis Compound from Eleutherine americana Grown in Indonesia. J Nat Med. 2010; 64(2):223-226. doi:10.1007/s11418-010-0396-7 DOI: https://doi.org/10.1007/s11418-010-0396-7

Fatiha R, Az Z, Laras N, Sari W, Saputry R, Dwi Nugroho G, Sunarto, Pribadi T, Setyawan A. Review: Traditional Knowledge of the Dayak Tribe (Borneo) in the Use of Medicinal Plants. Biodiversitas. 2021; 22(10):4633-4647. doi:10.13057/biodiv/d221057 DOI: https://doi.org/10.13057/biodiv/d221057

Shibuya H, Fukushima T, Ohashi K, Nakamura A, Riswan S, Kitagawa I. Indonesian Medicinal Plants. XX. Chemical Structures of Eleuthosides A, B, and C, Three New Aromatic Glucosides from the Bulbs of Eleutherine palmifolia (Iridaceae). Chem Pharm Bull (Tokyo). 1997; 45(7):1130-1134. doi:10.1248/cpb.45.1130 DOI: https://doi.org/10.1248/cpb.45.1130

Li X, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M. New Wnt/β-Catenin Signaling Inhibitors Isolated from Eleutherine palmifolia. Chem Asian J. 2009; 4(3):540-547. doi:10.1002/asia.200800354 DOI: https://doi.org/10.1002/asia.200800354

Ieyama T, Gunawan-Puteri MD, Kawabata J. α-Glucosidase Inhibitors from the Bulb of Eleutherine americana. Food Chem. 2011; 128(2):308-311. doi:10.1016/j.foodchem.2011.03.021 DOI: https://doi.org/10.1016/j.foodchem.2011.03.021

Schmidt JS, Lauridsen MB, Dragsted LO, Nielsen J, Staerk D. Development of a Bioassay-Coupled HPLC-SPE-ttNMR Platform for Identification of Alpha-Glucosidase Inhibitors in Apple Peel (Malus xdomestica Borkh.). Food Chem. 2012; 135(3):1692-1699. doi:10.1016/j.foodchem.2012.05.075 DOI: https://doi.org/10.1016/j.foodchem.2012.05.075

Sancheti S, Sancheti S, Seo S-Y. Chaenomeles Sinensis: A Potent α-and β-Glucosidase Inhibitor. Am J Pharmacol Toxicol. 2009; 4(1):8-11. doi:10.3844/ajptsp.2009.8.11 DOI: https://doi.org/10.3844/ajptsp.2009.8.11

Dej-Adisai S, Rais IR, Wattanapiromsakul C, Pitakbut T. Alpha-Glucosidase Inhibitory Assay-Screened Isolation and Molecular Docking Model from Bauhinia pulla Active Compounds. Molecules. 2021; 26(19):5970. doi:10.3390/molecules26195970 DOI: https://doi.org/10.3390/molecules26195970

Osiako FH, Samuel BB, Oluyemi WM. Effects of Selected Terminalia and Ficus Species in the Inhibition of α-Amylase and α-Glucosidase Enzymes. Trop J Nat Prod Res. 2023; 7(8):3775-3780. doi:10.26538/tjnpr/v7i8.31 DOI: https://doi.org/10.26538/tjnpr/v7i8.31

Malik A, Ardalani H, Anam S, McNair LM, Kromphardt KJK, Frandsen RJN, Franzyk H, Staerk D, Kongstad KT. Antidiabetic Xanthones with α-Glucosidase Inhibitory Activities from an Endophytic Penicillium canescens. Fitoterapia. 2020; 147:104522. doi:10.1016/j.fitote.2020.104522 DOI: https://doi.org/10.1016/j.fitote.2020.104522

Kowalska T and Sajewicz M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals—Its Versatile Potential and Selected Applications. Molecules. 2022; 27(19):6607. -doi:10.3390/molecules27196607 DOI: https://doi.org/10.3390/molecules27196607

Gauthier L, Wagner BD, Boyetchko S, Kirby CW. Bioassay-Guided Identification of Natural Products for Biocontrol by Thin Layer Chromatography-Direct Bioautography. J Vis Exp. 2024; 209:e66967. doi:10.3791/66967 DOI: https://doi.org/10.3791/66967

Zubair MS, Anam S, Lallo S. Cytotoxic Activity and Phytochemical Standardization of Lunasia amara Blanco Wood Extract. Asian Pac J Trop Biomed. 2016; 6(11):962-966. doi:10.1016/j.apjtb.2016.04.014 DOI: https://doi.org/10.1016/j.apjtb.2016.04.014

Nahid S, Saha T, Amin R, Rahman MA, Thousif AM, Chowdhury AT, Sadiq MZA, Faroque ABM. The Altered Efficacy of Traditional Antidiabetic Formulations in Chittagong Division: Metformin Admixing. Trop J Nat Prod Res. 2021; 5(3):453-459. doi:10.26538/tjnpr/v5i3.7 DOI: https://doi.org/10.26538/tjnpr/v5i3.7

Kamarudin AA, Sayuti NH, Saad N, Razak NAA, Esa NM. Eleutherine bulbosa (Mill.) Urb. Bulb: Review of the Pharmacological Activities and Its Prospects for Application. Int J Mol Sci. 2021; 22(13):6747. doi:10.3390/ijms22136747 DOI: https://doi.org/10.3390/ijms22136747

Anam S, Muhammad Y, Alfred T, Nurlina I, Ahmad K, Ramadanil, Muhammad SZ. Standarisasi Ekstralk Etil Asetat Kayu Sanrego (Lunasia amara Blanco). JST (Jurnal Sains dan Teknologi). 2013; 2(3):1-8. doi:10.22487/25411969.2013.v2.i3.1861

Salehi B, Ata A, V Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Tsouh Fokou PV, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander EA; Atta-ur-Rahman, Choudhary MI, Cho WC, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019; 9(10):551. doi:10.3390/biom9100551 DOI: https://doi.org/10.3390/biom9100551

Prasad DS, Laloo DD, Kumar M, Hemalatha S. Quality Control Standardization and Antioxidant Activity of Roots from Eriosema chinense. Pharmacogn J. 2013; 5(4):149-155. doi:10.1016/j.phcgj.2013.07.007 DOI: https://doi.org/10.1016/j.phcgj.2013.07.007

Murdifin M, Wahyudin E, Lao G, Subehan S, Manggau M, Alam G. Phytochemical Analysis and Antioxidant Activity of Mezzetia parviflora Becc. Woodbark Extract. Pharmacogn J. 2012; 4(30):18-21. doi:10.5530/pj.2012.34.3 DOI: https://doi.org/10.5530/pj.2012.34.3

Pereira C, Barros L, Carvalho AM, Ferreira ICFR. Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Anal Methods. 2013; 6(5):1337-1344. doi:10.1007/s12161-012-9548-6 DOI: https://doi.org/10.1007/s12161-012-9548-6