The Anticancer Potential of Plant Essential Oils: Mechanisms, Applications, and Challenges

Main Article Content

Mohd NAN Yuseri
Abd NZ Wahab
HS Asmara
Wan WR Taib
Abdul AS Manap

Abstract

Essential oils (EOs) derived from aromatic plants have gained increasing attention due to their potential anticancer properties. These plant-based bioactive compounds possess diverse pharmacological activities, including antioxidant, anti-inflammatory, and pro-apoptotic effects, which can influence critical pathways involved in cancer development and progression. This narrative review explores the anticancer potential of various plant EOs, emphasizing their role in modulating gene expression and cellular signaling pathways related to tumor suppression. We discuss the mechanisms through which EOs exert cytotoxic and antiproliferative effects, both as standalone agents and in synergy with conventional cancer therapies such as chemotherapy and radiotherapy. Furthermore, we address current challenges limiting the clinical application of EOs, including issues of bioavailability, safety, and regulatory approval. Despite these hurdles, the accumulating evidence highlights the promise of plant EOs as complementary or alternative options in cancer therapy. Continued research is essential to optimize their therapeutic efficacy and fully elucidate their mechanisms of action in cancer prevention and treatment. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

The Anticancer Potential of Plant Essential Oils: Mechanisms, Applications, and Challenges . (2025). Tropical Journal of Natural Product Research , 9(7), 2992 – 3006. https://doi.org/10.26538/tjnpr/v9i7.6

References

di Martino E, Smith L, Bradley SH, Hemphill S, Wright J, Renzi C, Bergin R, Emery J, Neal RD. Incidence trends for twelve cancers in younger adults—a rapid review. Br J. Cancer. 2022; 126(10):1374–1386. Doi: https://doi.org/10.1038/s41416-022-01704-x DOI: https://doi.org/10.1038/s41416-022-01704-x

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71(3):209–249. Doi: https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660

Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther. 2024; 9(1):1–30. Doi: https://doi.org/10.1038/s41392-024-01767-7 DOI: https://doi.org/10.1038/s41392-024-01767-7

Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Proliferation. 2020; 53(10):1–14. Doi: https://doi.org/10.1111/cpr.12894 DOI: https://doi.org/10.1111/cpr.12894

Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer, and inflammatory infliction. Acta Pharmaceutica Sinica B. 2022; 12(8):3255–3262. Doi: https://doi.org/10.1016/j.apsb.2022.03.012 DOI: https://doi.org/10.1016/j.apsb.2022.03.012

Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharmaceutica Sinica B. 2022; 12(11):4011–4039. Doi: https://doi.org/10.1016/j.apsb.2022.08.022 DOI: https://doi.org/10.1016/j.apsb.2022.08.022

Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural products as anticancer agents: Current status and future perspectives. Molecules. 2022; 27(23). Doi: https://doi.org/10.3390/molecules27238367 DOI: https://doi.org/10.3390/molecules27238367

Yesilyurt F, Yuca H, Karakaya S, Tekman E, Demirci B, Taghizadehghalehjoughi A, Göger G, Şahinöz MZ, Nobarirezaeyeh M, Hacimuftuoglu A, Güvenalp Z. Investigation on effects of walnut essential oil against glutamate toxicity on cortex neuron and LN405 cancer cell lines, diabetes, and some microorganisms. J. Essent Oil Res. 2023; 35(4):372–381. Doi: https://doi.org/10.1080/10412905.2023.2234372 DOI: https://doi.org/10.1080/10412905.2023.2234372

Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. Acta Materia Medica. 2024; 3(2):163–206. Doi: https://doi.org/10.15212/amm-2023-0050 DOI: https://doi.org/10.15212/AMM-2023-0050

Butnariu M. Bioactive natural volatile oils. Ann Clin Med Case Rep. 2023; 12(2):1–6. Doi: https://acmcasereport.org/

Bayala B, Bassole IH, Scifo R, Gnoula C, Morel L, Lobaccaro JMA, Simpore J. Anticancer activity of essential oils and their chemical components - a review. Am J. Cancer Res. 2014; 4(6):591–607. Doi: https://pmc.ncbi.nlm.nih.gov/articles/PMC4266698/?utm_source=chatgpt.com

Blowman K, Magalhães M, Lemos MFL, Cabral C, Pires IM. Anticancer properties of essential oils and other natural products. Evid-based Complementary Altern Med. 2018; 2018(1). Doi: https://doi.org/10.1155/2018/3149362 DOI: https://doi.org/10.1155/2018/3149362

Mustapa MA, Guswenrivo I, Zuhrotun A, Ikram NKK, Muchtaridi. Anti-breast cancer activity of essential oil: A systematic review. Appl Sci. 2022; 12:12738. Doi: https://doi.org/10.3390/app122412738 DOI: https://doi.org/10.3390/app122412738

Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy. Pharmaceuticals. 2023; 16(8). Doi: https://doi.org/10.3390/ph16081086

Twaij BM, Hasan MN. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int J. Plant Sci. 2022; 13(1):4–14. Doi: https://doi.org/10.3390/ijpb13010003 DOI: https://doi.org/10.3390/ijpb13010003

Sorrenti V, Burò I, Consoli V, Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int J. Mol Sci. 2023; 24(3). Doi: https://doi.org/10.3390/ijms24032019 DOI: https://doi.org/10.3390/ijms24032019

Quoc LPT. Physicochemical properties, chemical components, and antibacterial activity of Melaleuca cajuputi Powell essential oil leaves from Quang Tri Province, Vietnam. Bull Chem Soc of Ethiop. 2021; 35(3):677–683. Doi: https://doi.org/10.4314/bcse.v35i3.18 DOI: https://doi.org/10.4314/bcse.v35i3.18

Isah M, Rosdi RA, Wahab WNAWA, Abdullah H, Sul’ain MD, Ishak WRW. Phytoconstituents and biological activities of Melaleuca cajuputi Powell: A scoping review. J. Appl Pharm Sci. 2023; 13(1):10–23. Doi: https://doi.org/10.7324/JAPS.2023.130102 DOI: https://doi.org/10.7324/JAPS.2023.130102

Le HT, Huynh NTA. Chemical profiles of essential oils of two cultivars of Melaleuca cajuputi leaves and flowers. J. Phytol. 2024; 16:36–40. Doi: https://doi.org/10.25081/jp.2024.v16.8007 DOI: https://doi.org/10.25081/jp.2024.v16.8007

Tran PHA, Thanh THI, Vu TAM, Diem THI, Phan T, Nguyen VANM, Nghia THI, Ngo M, Viet C, Le C, Huu T, Ton DAT. Chemical compositions and biological properties of the leaf essential oil of three Melaleuca species. World Acad. Sci. J. 2024; 67(6):1–10. Doi: https://doi.org/10.3892/wasj.2024.282 DOI: https://doi.org/10.3892/wasj.2024.282

Pokajewicz K, Białoń M, Svydenko L, Fedin R, Hudz N. Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia mill. bred in Ukraine. Molecules. 2021; 26(18):5681. Doi: https://doi.org/10.3390/molecules26185681 DOI: https://doi.org/10.3390/molecules26185681

Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 2017; 4:58–58. Doi: https://www.mdpi.com/journal/medicines DOI: https://doi.org/10.3390/medicines4030058

Simbu S, Orchard A, Van Vuuren S. Essential oil compounds in combination with conventional antibiotics for dermatology. Molecules. 2024; 29(6):1225. Doi: https://doi.org/10.3390/molecules29061225 DOI: https://doi.org/10.3390/molecules29061225

Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic bactericidal effects of quaternary ammonium compounds with essential oil constituents. Foods. 2024; 13(12):1831. Doi: https://doi.org/10.3390/foods13121831 DOI: https://doi.org/10.3390/foods13121831

Angane M, Swift S, Huang K, Perera J, Chen X, Butts CA, Quek SY. Synergistic antimicrobial interaction of plant essential oils and extracts against foodborne pathogens. Food Sci Nutr. 2023; 12(2):1189–1206. Doi: https://doi.org/10.1002/fsn3.3834 DOI: https://doi.org/10.1002/fsn3.3834

Gaire S, Scharf M, Gondhalekar A. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.). Insects. 2020; 11(2):133. Doi: https://doi.org/10.3390/insects11020133 DOI: https://doi.org/10.3390/insects11020133

Bunse M, Daniels R, Gründemann C, Heilmann J, Kammerer DR, Keusgen M, Lindequist U, Melzig MF, Morlock GE, Schulz H, Schweiggert R, Simon M, Stintzing FC, Wink M. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front Pharmacol. 2022; 13:956541. Doi: https://www.frontiersin.org DOI: https://doi.org/10.3389/fphar.2022.956541

Bitwell C, Indra S, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023; 19:01585. Doi: https://doi.org/10.1016/j.sciaf.2023.e01585 DOI: https://doi.org/10.1016/j.sciaf.2023.e01585

Samadi M, Zainal Abidin Z, Yoshida H, Yunus R, Awang Biak DR. Towards higher oil yield and quality of essential oil extracted from Aquilaria malaccensis wood via the subcritical technique. Molecules. 2020; 25(17). Doi: https://doi.org/10.3390/molecules25173872 DOI: https://doi.org/10.3390/molecules25173872

Tzanova M, Atanasov V, Yaneva Z, Ivanova D, Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes. 2020; 8(10):1–30. Doi: https://doi.org/10.3390/pr8101222 DOI: https://doi.org/10.3390/pr8101222

Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods. 2024; 13(19):1–21. Doi: https://doi.org/10.3390/foods13193151 DOI: https://doi.org/10.3390/foods13193151

Souiy Z. Essential oil extraction process. Biochemistry. IntechOpen. 2023; Doi: https://doi.org/10.5772/intechopen.113311 DOI: https://doi.org/10.5772/intechopen.113311

Lu Q, Huang N, Peng Y, Zhu C, Pan S. Peel oils from three Citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci Technol. 2019; 56(10):4492–4502. Doi: https://doi.org/10.1007/s13197-019-03937-w DOI: https://doi.org/10.1007/s13197-019-03937-w

Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants. 2021; 10(9):1465. https://doi.org/10.3390/antiox10091465 DOI: https://doi.org/10.3390/antiox10091465

Sareriya KJ, Vanzara PB, Upadhyay. Methodology for extraction of essential oils: A review. Int J. Multidiscip Res. 2023; 5(4):1–2. Doi: https://doi.org/10.36948/ijfmr.2023.v05i04.5442 DOI: https://doi.org/10.36948/ijfmr.2023.v05i04.5442

Zhou W, Li J, Wang X, Liu L, Li Y, Song R, Zhang M, Li X. Research progress on extraction, separation, and purification methods of plant essential oils. Separations. 2023; 10(12):596. Doi: https://doi.org/10.3390/separations10120596 DOI: https://doi.org/10.3390/separations10120596

Najib MA, Kasiram MZ, Jamil N, Izani N, Dasuki M, Wan-Nor-Amilah WAW. Formulation containing Melaleuca cajuputi essential oil. Malays J Microbiol. 2024; 20(4):451–458. Doi: https://doi.org/10.21161/mjm.230245 DOI: https://doi.org/10.21161/mjm.230245

Isnaini I, Achmadiyah RD, Awaeh G, Khatimah H, Yasmina A. Antioxidant and antiproliferative activities of methanol extract from Melaleuca cajuputi subsp. cumingiana [Turcz.] fruit. J. Ilm. Berk. Sains Terap. Kim. (Online). 2023; 17(1):21. Doi: https://doi.org/10.20527/jstk.v17i1.13055 DOI: https://doi.org/10.20527/jstk.v17i1.13055

Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024; 9(1). Doi: https://doi.org/10.1038/s41392-024-01856-7 DOI: https://doi.org/10.1038/s41392-024-01856-7

Dzobo K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology. 2022; 2:408–422. Doi: https://doi.org/10.1016/B978-0-12-820472-6.00041-4 DOI: https://doi.org/10.1016/B978-0-12-820472-6.00041-4

Permatasari HK, Subali AD, Yusuf M. Proapoptotic activity of essential oils from Syzygium aromaticum, Melaleuca cajuputi, and Cymbopogon nardus on HeLa human cervical cancer cells. J. Appl. Pharm. Sci. 2022; 12(12):84–94. Doi: https://doi.org/10.7324/JAPS.2022.121209 DOI: https://doi.org/10.7324/JAPS.2022.121209

Agnesia P, Herawati E, Pratiwi R. Anticancer activity of mackerel scad (Decapterus macarellus) fish oil on colorectal cancer cell lines. Trop J. Nat Prod Res. 2025; 1981. Doi: https://doi.org/10.26538/tjnpr/v9i5.15 DOI: https://doi.org/10.26538/tjnpr/v9i5.15

Yahya AK, Abd Wahab NZ, Ibrahim N. Bioactive compounds of plant essential oils and their antiviral properties: A comprehensive review. Malays. J. Chem. 2024; 26(4), 123-136. Doi: https://doi.org/10.55373/mjchem.v26i4.123 DOI: https://doi.org/10.55373/mjchem.v26i4.123

Abd Wahab NZ, Ja’afar NSA, Ismail SB. Evaluation of antibacterial activity of essential oils of Melaleuca cajuputi Powell. J. Pure Appl Microbiol. 2022; 16(1):549–556. Doi: https://doi.org/10.22207/JPAM.16.1.52 DOI: https://doi.org/10.22207/JPAM.16.1.52

Abd Wahab NZ, Noor Azam SNA, Sayed Abdul Kadir SMSF, Abdullah MH. Evaluation of antimicrobial and sporicidal activities, and stability testing of herbal skin wash preparations from Melaleuca cajuputi subsp. cumingiana essential oils and Kyllinga nemoralis aqueous extract. Trop J. Nat Prod Res. 2025; 9(1):14-23. Doi: https://doi.org/10.26538/tjnpr/v9i1.3 DOI: https://doi.org/10.26538/tjnpr/v9i1.3

Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential oils and their main chemical components: The past 20 years of preclinical studies in melanoma. Cancers. 2020; 12:2650-2652. Doi: https://doi.org/10.3390/cancers12092650 DOI: https://doi.org/10.3390/cancers12092650

Abdoul-Latif FM, Ainane A, Aboubaker IH, Mohamed J, Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy. Pharmaceuticals. 2023; 16(8):1086. Doi: https://doi.org/10.3390/ph16081086 DOI: https://doi.org/10.3390/ph16081086

Gautam N, Mantha AK, Sunil Mittal. Essential oils and their constituents as anticancer agents: A mechanistic view. Biomed Res Int. 2014; 2014(154106): 23. Doi: http://dx.doi.org/10.1155/2014/154106 DOI: https://doi.org/10.1155/2014/154106

Rezaieseresht H, Shobeiri SS, Kaskani A. Chenopodium botrys essential oil as a source of sesquiterpenes to induce apoptosis and G1 cell cycle arrest in cervical cancer cells. PubMed. 2020; 19(2):341–351. Doi: https://doi.org/10.22037/ijpr.2019.1100671

Sharma M, Grewal K, Jandrotia R, Daizy RB, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother. 2021; 146:112514. Doi: https://doi.org/10.1016/j.biopha.2021.112514 DOI: https://doi.org/10.1016/j.biopha.2021.112514

Fernandes Y, Matos J, Lima C, Tardini A, Viera F, Maia J, Monteiro O, Longato G, Rocha C. Essential oils obtained from Aerial eugenia punicifolia parts: Chemical composition and antiproliferative potential evidenced through cell cycle arrest. J. Braz Chem Soc. 2021; Doi: https://doi.org/10.21577/0103-5053.20210036 DOI: https://doi.org/10.21577/0103-5053.20210036

Chung K, Hong JY, Lee J, Lee H, Park JY, Choi J, Park H, Hong J, Lee K. β-caryophyllene in the essential oil from Chrysanthemum boreale induces G1 phase cell cycle arrest in human lung cancer cells. Molecules. 2019; 24(20):3754. Doi: https://doi.org/10.3390/molecules24203754 DOI: https://doi.org/10.3390/molecules24203754

Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 2009; 122(16):2801–2808. Doi: https://doi.org/10.1242/jcs.038166 DOI: https://doi.org/10.1242/jcs.038166

Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: activation and inhibition in health and disease. Med Sci. 2018; 6(54). Doi: https://doi.org/10.3390/medsci6030054 DOI: https://doi.org/10.3390/medsci6030054

Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. 2013; 6(19):546–558. Doi: https://doi.org/10.1089/ars.2012.4905 DOI: https://doi.org/10.1089/ars.2012.4905

Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 95–118. Doi: https://doi.org/10.1146/annurev-genet-102108-134850 DOI: https://doi.org/10.1146/annurev-genet-102108-134850

Ahmadpour V, Modarresi M, Eftekhari M, Saeedi M, Karimi N, Rasekhian M. Chemical composition of essential and fixed oils of Tagetes erecta fruits (Iran) and their implications in inhibition of cancer signaling. Sci. Rep. 2024; 14(1). Doi: https://doi.org/10.1038/s41598-024-70582-5 DOI: https://doi.org/10.1038/s41598-024-70582-5

Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J. Transl Med. 2024; 22(1). Doi: https://doi.org/10.1186/s12967-024-05998-8 DOI: https://doi.org/10.1186/s12967-024-05998-8

Cao Y, Yi Y, Han C, Shi B. NF-kB signaling pathway in tumor microenvironment. In Federico Gomez Children’s Hospital (Ed.), Front Immunol. 2024; Doi: https://doi.org/10.3389/fimmu.2024.1476030 DOI: https://doi.org/10.3389/fimmu.2024.1476030

Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers. 2021; 13(16):3949. Doi: https://doi.org/10.3390/cancers13163949 DOI: https://doi.org/10.3390/cancers13163949

Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021; 6:263. Doi: https://doi.org/10.1038/s41392-021-00658-5 DOI: https://doi.org/10.1038/s41392-021-00658-5

Wani AK, Akhtar N, Mir TuG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A, Devkota HP, Prakash A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules. 2023, 13(2), 194. https://doi.org/10.3390/biom13020194 DOI: https://doi.org/10.3390/biom13020194

Duaa YK, Omar MH. Anti-inflammatory and antioxidant activity of rosemary essential oil. J. Angiother. 2024; 8(4):1-6. Doi: https://doi.org/10.25163/angiotherapy.849609 DOI: https://doi.org/10.25163/angiotherapy.849609

Chen X, Shang S, Yan F, Jiang H, Zhao G, Tian S, Chen R, Chen D, Dang Y. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress. Molecules. 2023; 28(11):4559. Doi: https://doi.org/10.3390/molecules28114559 DOI: https://doi.org/10.3390/molecules28114559

Ren P, Ren X, Cheng L, Xu L. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer. Oncol. Rep. 2017; Doi: https://doi.org/10.3892/or.2017.6067 DOI: https://doi.org/10.3892/or.2017.6067

Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther. 2018; 17(6):1147–1155. Doi: https://doi.org/10.1158/1535-7163.mct-17-0646 DOI: https://doi.org/10.1158/1535-7163.MCT-17-0646

Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: A review. Front Mol Biosci. 2022; 9. Doi: https://doi.org/10.3389/fmolb.2022.896099 DOI: https://doi.org/10.3389/fmolb.2022.896099

Hassan ZK, Elamin MH, Daghestani MH, Omer SA, Al-Olayan EM, Elobeid MA, Virk P, Mohammed OB. Oleuropein induces anti-metastatic effects in breast cancer. Asian Pac J. Cancer Prev. 2012; 13(9):4555–4559. Doi: https://doi.org/10.7314/apjcp.2012.13.9.4555 DOI: https://doi.org/10.7314/APJCP.2012.13.9.4555

Russo R, Corasaniti MT, Bagetta G, Morrone LA. Exploitation of cytotoxicity of some essential oils for translation in cancer therapy. Evid-based Complementary Altern Med. 2015; 1–9. Doi: https://doi.org/10.1155/2015/397821 DOI: https://doi.org/10.1155/2015/397821

Jamali T, Ardestani SK. Investigating anti-cancer, anti-oxidant and immunomodulatory effects of essential oils: focusing on Oliveria decumbens and Zataria multiflora essential oils. Immunoregulation. 2024; 6(1):13–28. Doi: https://doi.org/10.32598/immunoregulation.6.1.6 DOI: https://doi.org/10.32598/Immunoregulation.6.1.6

Rohilla S, Singh S, Hazra A. Essential Oils: A Natural Therapy for the Treatment of Cancer. Pharmacogn. Rev. 2023; 17(34):296–307. Doi: https://doi.org/10.5530/phrev.2023.17.9 DOI: https://doi.org/10.5530/phrev.2023.17.9

Marx W, McCarthy AL, Ried K, Vitetta L, McKavanagh D, Thomson D, Sali A, Isenring L. Can ginger ameliorate chemotherapy-induced nausea? Protocol of a randomized double blind, placebo-controlled trial. BMC Complement Altern Med. 2014; 14(1). Doi: https://doi.org/10.1186/1472-6882-14-134 DOI: https://doi.org/10.1186/1472-6882-14-134

Volpes S, Cruciata I, Ceraulo F, Schimmenti C, Naselli F, Pinna C, Mauro M, Picone P, Dallavalle S, Nuzzo D, Pinto A, Caradonna F. Nutritional epigenomic and DNA-damage modulation effect of natural stilbenoids. Sci. Rep. 2023; 13(1). Doi: https://doi.org/10.1038/s41598-022-27260-1 DOI: https://doi.org/10.1038/s41598-022-27260-1

Qadi SA, Hassan MA, Sheikh RA, Baothman OA, Zamzami MA, Choudhry H, Al-Malki AL, Albukhari A, Alhosin M. Thymoquinone-induced reactivation of tumor suppressor genes in cancer cells involves epigenetic mechanisms. Epigenet Insights. 2019; 4;12:2516865719839011. Doi: https://doi.org/10.1177/2516865719839011 DOI: https://doi.org/10.1177/2516865719839011

Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget. 2018; 9(64):32305-32320. Doi: https://www.oncotarget.com DOI: https://doi.org/10.18632/oncotarget.25955

Aras A, Iqbal MJ, Naqvi SK, Gercek YC, Boztas K, Gasparri ML, Shatynska-Mytsyk I, Fayyaz S, Farooqi AA. Anticancer activity of essential oils: targeting of protein networks in cancer cells. Asian Pac J. Cancer Prev. 2014; 15(19):8047–8050. Doi: https://doi.org/10.7314/apjcp.2014.15.19.8047 DOI: https://doi.org/10.7314/APJCP.2014.15.19.8047

Mandal D, Patel P, Verma SK, Sahu BR, Parija T. Proximal discrepancy in intrinsic atomic interaction arrests G2/M phase by inhibiting Cyclin B1/CDK1 to infer molecular and cellular biocompatibility of d-limonene. Sci Rep. 2022;12(1):18184. Doi: https://doi.org/10.1038/s41598-022-21364-4 DOI: https://doi.org/10.1038/s41598-022-21364-4

Miller JA, Lang JE, Ley M, Nagle R, Hsu C, Thompson PA, Cordova C, Waer A, Chow HS. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer. Cancer Prev Res. 2013; 6(6):577–584. Doi: https://doi.org/10.1158/1940-6207.capr-12-0452 DOI: https://doi.org/10.1158/1940-6207.CAPR-12-0452

Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor effects of carvacrol and thymol: A systematic review. Front. Pharmacol. 12:702487. Doi: https://doi.org/10.3389/fphar.2021.702487 DOI: https://doi.org/10.3389/fphar.2021.702487

Suhail MM, Wu W, Cao A, Mondalek FG, Fung K, Shih P, Fang Y, Woolley C, Young G, Lin H. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med. 2011; 11(1). Doi: https://doi.org/10.1186/1472-6882-11-129 DOI: https://doi.org/10.1186/1472-6882-11-129

Spyridopoulou K, Tiptiri-Kourpeti A, Lampri E, Fitsiou E, Vasileiadis S, Vamvakias M, Bardouki H, Goussia A, Malamou-Mitsi V, Panayiotidis MI, Galanis A, Pappa A, Chlichlia K. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017; 7(1):3782. Doi: https://doi.org/10.1038/s41598-017-03971-8 DOI: https://doi.org/10.1038/s41598-017-03971-8

Kozics K, Mesárošová M, Šramková M, Bučková M, Puškárová A, Galová D, Pangallo D. Evaluation of bioactivity of essential oils: Cytotoxic/genotoxic effects on colorectal cancer cell lines, antibacterial activity, and survival of lactic acid bacteria. Molecules. 2025; 30(4):890. Doi: https://doi.org/10.3390/molecules30040890 DOI: https://doi.org/10.3390/molecules30040890

Petrocelli G, Farabegoli F, Valerii MC, Giovannini C, Sardo A, Spisni E. Molecules present in plant essential oils for prevention and treatment of colorectal cancer (CRC). Molecules. 2021; 26(4):885. Doi: https://doi.org/10.3390/molecules26040885 DOI: https://doi.org/10.3390/molecules26040885

Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing anti-tumorigenic efficacy of eugenol in human colon cancer cells using enzyme-responsive nanoparticles. Cancers. 2023; 15(4):1145. Doi: https://doi.org/10.3390/cancers15041145 DOI: https://doi.org/10.3390/cancers15041145

Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021; 11(1):13178. Doi: https://doi.org/10.1038/s41598-021-92679-x DOI: https://doi.org/10.1038/s41598-021-92679-x

Ghaffari T, Asnaashari S, Irannejad E, Delazar A, Farajnia S, Hong J, Pang C, Hamishehkar H, Kim KH. comparative evaluation of apoptosis induction using needles, bark, and pollen extracts and essential oils of Pinus eldarica in lung cancer cells. Appl Sci. 2021; 11(13):5763. Doi: https://doi.org/10.3390/app11135763 DOI: https://doi.org/10.3390/app11135763

Gökhan A. Evaluation of cytotoxic, membrane damaging and apoptotic effects of Origanum majorana essential oil on lung cancer and epidermoid carcinoma cells. Cyprus J Med Sci 2022. 7(2):201-206. Doi: https://doi.org/10.4274/cjms.2021.2021-142 DOI: https://doi.org/10.4274/cjms.2021.2021-142

Byahatti S, Bogar C, Bhat K, Dandagi G. Evaluation of anticancer activity of Melaleuca alternifolia. (i. e. tea tree oil) on leukemia cancer cell line (K562): An in vitro study. J. Med Plants Stud. 2018; 6(5):1–6. DOI: https://doi.org/10.26463/rjms.9_1_8

Di Martile M, Garzoli S, Sabatino M, Valentini E, D’Aguanno S, Ragno R, Del Bufalo D. Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Discov. 2021; 7(1):127. Doi: https://doi.org/10.1038/s41420-021-00510-3 DOI: https://doi.org/10.1038/s41420-021-00510-3

Aziz O, Suleman A, Fatima Z, Yasin A, Nasir A, Ubaid M, Shahbaz H, Rafiq MF, Khaliq HMH, Sehar A, Bukhari SFS. Eugenol’s molecular warfare against human leukemia K562 cells: In vitro insights to chemotherapeutic potentials. J. Health Rehabil. Res. 2024; 4(1):943–949. Doi: https://doi.org/10.61919/jhrr.v4i1.536 DOI: https://doi.org/10.61919/jhrr.v4i1.536

Khaliq HMH, Bughio R, Nangdev P, Aziz O, Javed W. Integrating eugenol with intensive care in leukemia patients: exploration of pro-apoptotic potential against HL-60, human leukemia cell line. Anaesth Pain Intensive Care. 2024; 28(5):871–875. Doi: https://doi.org/10.35975/apic.v28i5.2491 DOI: https://doi.org/10.35975/apic.v28i5.2491

Wadood M, Zafar S, Anwar B, Bhatti M, Ali S, Niaz M, Ali MA. Interlinking leukemia cell lines with clinicopathological therapeutics: Exploring eugenol’s anti-cancer potential for leukemia and its types. Pakistan J. Health Sci. 2024; 5(12),339–346. Doi: https://doi.org/10.54393/pjhs.v5i12.2536 DOI: https://doi.org/10.54393/pjhs.v5i12.2536

Quintero-García WL, Espinel-Mesa DX, Moreno EM, Stashenko E, Mesa-Arango AC, García LT. Enhancing selectivity and inhibitory effects of chemotherapy drugs against myelogenous leukemia cells with Lippia alba essential oil enriched in citral. Int J. Mol Sci. 2024; 25(16):8920. Doi: https://doi.org/10.3390/ijms25168920 DOI: https://doi.org/10.3390/ijms25168920

Saito N, Hirai N, Koyahara Y, Hiramoto Y, Fujita S, Nakayama H, Hayashi M, Ito K, Iwabuchi S. 10082- et-9 antitumor aroma therapy with frankincense essential oil for glioblastoma. Neuro-Oncol Adv. 2024; 6(4):5. Doi: https://doi.org/10.1093/noajnl/vdae173.018 DOI: https://doi.org/10.1093/noajnl/vdae173.018

Chang K, Chang JT, Huang X, Huang Y, Li C, Weng J, Hsiao C, Hsu H, Tsai N. Cedrus atlantica extract suppress glioblastoma growth through promotion of genotoxicity and apoptosis: In vitro and in vivo studies. Int J. Med Sci. 2021; 18(11):2417–2430. Doi: https://doi.org/10.7150/ijms.54468 DOI: https://doi.org/10.7150/ijms.54468

Gu H, Yi T, Lin P, Hu J. Study on essential oil, antioxidant activity, anti-human prostate cancer effects, and induction of apoptosis by Equisetum arvense. Open Chemistry. 2022; 20(1):1187–1195. Doi: https://doi.org/10.1515/chem-2022-0203 DOI: https://doi.org/10.1515/chem-2022-0203

Bommareddy A, Oberlin J, Blankenhorn K, Hughes S, Mabry E, Knopp A, VanWert A, Dwivedi C, Pinkerton I, Gutierrez L. Alpha-santalol, a derivative of sandalwood oil prevents development of prostate cancer in TRAMP mice. Phytomed. Plus. 2024; 100523. Doi: https://doi.org/10.1016/j.phyplu.2024.100523 DOI: https://doi.org/10.1016/j.phyplu.2024.100523

Boța M, Vlaia L, Jîjie A, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă E. Exploring synergistic interactions between natural compounds and conventional chemotherapeutic drugs in preclinical models of lung cancer. Pharmaceuticals. 2024; 17(5):598. Doi: https://doi.org/10.3390/ph17050598 DOI: https://doi.org/10.3390/ph17050598

Hamzah EF, Al-Mussawy AN, Al-Azawi RSA, Al-Shukri H. The role of herbals in complementary and alternative cancer therapies: A critical review. South Asian Res J. Appl Med Sci. 2024; 6(04):122–127. Doi: https://doi.org/10.36346/sarjams.2024.v06i04.007 DOI: https://doi.org/10.36346/sarjams.2024.v06i04.007

Zhou H, Zhang M, Cao H, Du X, Zhang X, Wang J, Bi X. Research progress on the synergistic anti-tumor effect of natural anti-tumor components of Chinese herbal medicine combined with chemotherapy drugs. Pharmaceuticals. 2023; 16(12):1734. Doi: https://doi.org/10.3390/ph16121734 DOI: https://doi.org/10.3390/ph16121734

Viktorová J, Stupák M, Řehořová K, Dobiasová S, Hoang L, Hajšlová J, Van Thanh T, Van Tri L, Van Tuan N, Ruml T. Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral - Its dominant and strongly antimicrobial compound. Foods. 2020; 9(5):585. Doi: https://doi.org/10.3390/foods9050585 DOI: https://doi.org/10.3390/foods9050585

Al-Balushi RA, Chaudhuri A, Kandimalla R, Haque A, Alenezi KM, Saeed M, Changez M, Harthy TA, Hinaai MA, Siddiqui S, Agrawal AK, Aqil F. In vitro anticancer effects of frankincense and its nanoemulsions for enhanced cancer cell targeting. Front Pharmacol. 2025; 16:1403780. Doi: https://doi.org/10.3389/fphar.2025.1403780 DOI: https://doi.org/10.3389/fphar.2025.1403780

Naksawat M, Norkaew C, Charoensedtasin K, Roytrakul S, Tanyong D. Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy. PeerJ. 2023; 11:15049. Doi: https://doi.org/10.7717/peerj.15049 DOI: https://doi.org/10.7717/peerj.15049

Zick SM, Ruffin MT, Lee J, Normolle DP, Siden R, Alrawi S, Brenner DE. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support Care Cancer. 2008; 17(5):563–572. Doi: https://doi.org/10.1007/s00520-008-0528-8 DOI: https://doi.org/10.1007/s00520-008-0528-8

Crichton M, Marshall S, Isenring E, Lohning A, McCarthy AL, Molassiotis A, Bird R, Shannon C, Koh A, McPherson I, Marx W. Effect of a standardized ginger root powder regimen on chemotherapy-induced nausea and vomiting: a multicenter, double-blind, placebo-controlled randomized trial. J. Acad Nutr Diet. 2023; 124(3):313-330. Doi: https://doi.org/10.1016/j.jand.2023.09.003 DOI: https://doi.org/10.1016/j.jand.2023.09.003

Dajic Stevanovic Z, Sieniawska E, Glowniak K, Obradovic N, Pajic-Lijakovic I. Natural macromolecules as carriers for essential oils: from extraction to biomedical application. Front Bioeng Biotechnol. 2020; 8:563. Doi: https://doi.org/10.3389/fbioe.2020.00563 DOI: https://doi.org/10.3389/fbioe.2020.00563

Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics. 2021; 13(3):327. Doi: https://doi.org/10.3390/pharmaceutics13030327 DOI: https://doi.org/10.3390/pharmaceutics13030327

Maes C, Bouquillon S, Fauconnier M. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 2019; 24(14):2539. Doi: https://doi.org/10.3390/molecules24142539 DOI: https://doi.org/10.3390/molecules24142539

Sæbø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J. Mol Sci. 2023; 24:2914. Doi: https://doi.org/10.3390/ijms24032914 DOI: https://doi.org/10.3390/ijms24032914

Capetti F, Marengo A, Cagliero C, Liberto E, Bicchi C, Rubiolo P, Sgorbini B. Adulteration of essential oils: A multitask issue for quality control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules. 2021; 26(18):5610. Doi: https://doi.org/10.3390/molecules26185610 DOI: https://doi.org/10.3390/molecules26185610

Joppi R, Bertele V, Vannini T, Garattini S, Banzi R. Food and drug administration vs european medicines agency: Review times and clinical evidence on novel drugs at the time of approval. Br J. Clin Pharmacol. 2019; 86(1):170–174. Doi: https://doi.org/10.1111/bcp.14130 DOI: https://doi.org/10.1111/bcp.14130

Nurzyńska-Wierdak R, Walasek-Janusz M. Chemical composition, biological activity, and potential uses of oregano (Origanum vulgare L.) and oregano essential oil. Pharmaceuticals. 2025; 18(2):267. Doi: https://doi.org/10.3390/ph18020267 DOI: https://doi.org/10.3390/ph18020267

Nasseri M, Golmohammadzadeh S, Arouiee H, Jaafari MR, Neamati H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Directory of Open Access Journals. 2016; 19(11):1231–1237. Doi: https://doaj.org/article/ad7d91a80dff4b0aa5371ab53e098ff9

Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid-based Complement Altern Med. 2014; 2014:651593. Doi: https://doi.org/10.1155/2014/651593 DOI: https://doi.org/10.1155/2014/651593

Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020; 25(20):4613. Doi: https://doi.org/10.3390/molecules25204613 DOI: https://doi.org/10.3390/molecules25204613

Ai Z, Liu B, Chen J, Zeng X, Wang K, Tao C, Chen J, Yang L, Ding Q, Zhou M. Advances in nano drug delivery systems for enhanced efficacy of emodin in cancer therapy. Int J. Pharma. 2024; X 9:100314. Doi: https://doi.org/10.1016/j.ijpx.2024.100314 DOI: https://doi.org/10.1016/j.ijpx.2024.100314

Ly P, Ly K, Phan H, Nguyen HHT, Duong V, Nguyen HV. Recent advances in surface decoration of nanoparticles in drug delivery. Front. Pharmacol. 2021; 12:702487. Doi: https://doi.org/10.3389/fnano.2024.1456939 DOI: https://doi.org/10.3389/fnano.2024.1456939

Abdessalem MA, Adham SA. Research advancements in nanoparticles and cell-based drug delivery systems for the targeted killing of cancer cells. Oncol Res. 2024;33(1):27-44. Doi: https://doi.org/10.32604/or.2024.056955 DOI: https://doi.org/10.32604/or.2024.056955

Duong H, Dinh KB, Luu T, Chapman J, Baji A, Truong VK. Nanoengineered sustainable antimicrobial packaging: Integrating essential oils into polymer matrices to combat food waste. Int J. Food Sci Tech. 2024; 59(9):5887–5901. Doi: https://doi.org/10.1111/ijfs.17364 DOI: https://doi.org/10.1111/ijfs.17364

Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018; 9(1):1410. Doi: https://doi.org/10.1038/s41467-018-03705-y DOI: https://doi.org/10.1038/s41467-018-03705-y

Scuteri D, Watanabe C, Sakurada S, Hamamura K, Sakurada T, Tonin P, Bagetta G, Corasaniti MT. Pharmacotechnological advances for clinical translation of essential oils for the treatment of pain and agitation in severe dementia. Processes. 2022; 10(7):1340. Doi: https://doi.org/10.3390/pr10071340 DOI: https://doi.org/10.3390/pr10071340

Kashyap R. Exploring the molecular mechanisms and therapeutic potentials of essential oils: A systems biology approach. Future Integr Med. 2024; 3(2):116–131. Doi: https://doi.org/10.14218/fim.2023.00071 DOI: https://doi.org/10.14218/FIM.2023.00071

De Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, De Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential oils: Chemistry and pharmacological activities. Biomolecules. 2023; 13(7):1144. Doi: https://doi.org/10.3390/biom13071144 DOI: https://doi.org/10.3390/biom13071144

Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012; 17(4):53989–4006. Doi: https://doi.org/10.3390/molecules17043989 DOI: https://doi.org/10.3390/molecules17043989