The Anticancer Potential of Plant Essential Oils: Mechanisms, Applications, and Challenges
Main Article Content
Abstract
Essential oils (EOs) derived from aromatic plants have gained increasing attention due to their potential anticancer properties. These plant-based bioactive compounds possess diverse pharmacological activities, including antioxidant, anti-inflammatory, and pro-apoptotic effects, which can influence critical pathways involved in cancer development and progression. This narrative review explores the anticancer potential of various plant EOs, emphasizing their role in modulating gene expression and cellular signaling pathways related to tumor suppression. We discuss the mechanisms through which EOs exert cytotoxic and antiproliferative effects, both as standalone agents and in synergy with conventional cancer therapies such as chemotherapy and radiotherapy. Furthermore, we address current challenges limiting the clinical application of EOs, including issues of bioavailability, safety, and regulatory approval. Despite these hurdles, the accumulating evidence highlights the promise of plant EOs as complementary or alternative options in cancer therapy. Continued research is essential to optimize their therapeutic efficacy and fully elucidate their mechanisms of action in cancer prevention and treatment.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
di Martino E, Smith L, Bradley SH, Hemphill S, Wright J, Renzi C, Bergin R, Emery J, Neal RD. Incidence trends for twelve cancers in younger adults—a rapid review. Br J. Cancer. 2022; 126(10):1374–1386. Doi: https://doi.org/10.1038/s41416-022-01704-x DOI: https://doi.org/10.1038/s41416-022-01704-x
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71(3):209–249. Doi: https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther. 2024; 9(1):1–30. Doi: https://doi.org/10.1038/s41392-024-01767-7 DOI: https://doi.org/10.1038/s41392-024-01767-7
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Proliferation. 2020; 53(10):1–14. Doi: https://doi.org/10.1111/cpr.12894 DOI: https://doi.org/10.1111/cpr.12894
Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer, and inflammatory infliction. Acta Pharmaceutica Sinica B. 2022; 12(8):3255–3262. Doi: https://doi.org/10.1016/j.apsb.2022.03.012 DOI: https://doi.org/10.1016/j.apsb.2022.03.012
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharmaceutica Sinica B. 2022; 12(11):4011–4039. Doi: https://doi.org/10.1016/j.apsb.2022.08.022 DOI: https://doi.org/10.1016/j.apsb.2022.08.022
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural products as anticancer agents: Current status and future perspectives. Molecules. 2022; 27(23). Doi: https://doi.org/10.3390/molecules27238367 DOI: https://doi.org/10.3390/molecules27238367
Yesilyurt F, Yuca H, Karakaya S, Tekman E, Demirci B, Taghizadehghalehjoughi A, Göger G, Şahinöz MZ, Nobarirezaeyeh M, Hacimuftuoglu A, Güvenalp Z. Investigation on effects of walnut essential oil against glutamate toxicity on cortex neuron and LN405 cancer cell lines, diabetes, and some microorganisms. J. Essent Oil Res. 2023; 35(4):372–381. Doi: https://doi.org/10.1080/10412905.2023.2234372 DOI: https://doi.org/10.1080/10412905.2023.2234372
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. Acta Materia Medica. 2024; 3(2):163–206. Doi: https://doi.org/10.15212/amm-2023-0050 DOI: https://doi.org/10.15212/AMM-2023-0050
Butnariu M. Bioactive natural volatile oils. Ann Clin Med Case Rep. 2023; 12(2):1–6. Doi: https://acmcasereport.org/
Bayala B, Bassole IH, Scifo R, Gnoula C, Morel L, Lobaccaro JMA, Simpore J. Anticancer activity of essential oils and their chemical components - a review. Am J. Cancer Res. 2014; 4(6):591–607. Doi: https://pmc.ncbi.nlm.nih.gov/articles/PMC4266698/?utm_source=chatgpt.com
Blowman K, Magalhães M, Lemos MFL, Cabral C, Pires IM. Anticancer properties of essential oils and other natural products. Evid-based Complementary Altern Med. 2018; 2018(1). Doi: https://doi.org/10.1155/2018/3149362 DOI: https://doi.org/10.1155/2018/3149362
Mustapa MA, Guswenrivo I, Zuhrotun A, Ikram NKK, Muchtaridi. Anti-breast cancer activity of essential oil: A systematic review. Appl Sci. 2022; 12:12738. Doi: https://doi.org/10.3390/app122412738 DOI: https://doi.org/10.3390/app122412738
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy. Pharmaceuticals. 2023; 16(8). Doi: https://doi.org/10.3390/ph16081086
Twaij BM, Hasan MN. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int J. Plant Sci. 2022; 13(1):4–14. Doi: https://doi.org/10.3390/ijpb13010003 DOI: https://doi.org/10.3390/ijpb13010003
Sorrenti V, Burò I, Consoli V, Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int J. Mol Sci. 2023; 24(3). Doi: https://doi.org/10.3390/ijms24032019 DOI: https://doi.org/10.3390/ijms24032019
Quoc LPT. Physicochemical properties, chemical components, and antibacterial activity of Melaleuca cajuputi Powell essential oil leaves from Quang Tri Province, Vietnam. Bull Chem Soc of Ethiop. 2021; 35(3):677–683. Doi: https://doi.org/10.4314/bcse.v35i3.18 DOI: https://doi.org/10.4314/bcse.v35i3.18
Isah M, Rosdi RA, Wahab WNAWA, Abdullah H, Sul’ain MD, Ishak WRW. Phytoconstituents and biological activities of Melaleuca cajuputi Powell: A scoping review. J. Appl Pharm Sci. 2023; 13(1):10–23. Doi: https://doi.org/10.7324/JAPS.2023.130102 DOI: https://doi.org/10.7324/JAPS.2023.130102
Le HT, Huynh NTA. Chemical profiles of essential oils of two cultivars of Melaleuca cajuputi leaves and flowers. J. Phytol. 2024; 16:36–40. Doi: https://doi.org/10.25081/jp.2024.v16.8007 DOI: https://doi.org/10.25081/jp.2024.v16.8007
Tran PHA, Thanh THI, Vu TAM, Diem THI, Phan T, Nguyen VANM, Nghia THI, Ngo M, Viet C, Le C, Huu T, Ton DAT. Chemical compositions and biological properties of the leaf essential oil of three Melaleuca species. World Acad. Sci. J. 2024; 67(6):1–10. Doi: https://doi.org/10.3892/wasj.2024.282 DOI: https://doi.org/10.3892/wasj.2024.282
Pokajewicz K, Białoń M, Svydenko L, Fedin R, Hudz N. Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia mill. bred in Ukraine. Molecules. 2021; 26(18):5681. Doi: https://doi.org/10.3390/molecules26185681 DOI: https://doi.org/10.3390/molecules26185681
Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 2017; 4:58–58. Doi: https://www.mdpi.com/journal/medicines DOI: https://doi.org/10.3390/medicines4030058
Simbu S, Orchard A, Van Vuuren S. Essential oil compounds in combination with conventional antibiotics for dermatology. Molecules. 2024; 29(6):1225. Doi: https://doi.org/10.3390/molecules29061225 DOI: https://doi.org/10.3390/molecules29061225
Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic bactericidal effects of quaternary ammonium compounds with essential oil constituents. Foods. 2024; 13(12):1831. Doi: https://doi.org/10.3390/foods13121831 DOI: https://doi.org/10.3390/foods13121831
Angane M, Swift S, Huang K, Perera J, Chen X, Butts CA, Quek SY. Synergistic antimicrobial interaction of plant essential oils and extracts against foodborne pathogens. Food Sci Nutr. 2023; 12(2):1189–1206. Doi: https://doi.org/10.1002/fsn3.3834 DOI: https://doi.org/10.1002/fsn3.3834
Gaire S, Scharf M, Gondhalekar A. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.). Insects. 2020; 11(2):133. Doi: https://doi.org/10.3390/insects11020133 DOI: https://doi.org/10.3390/insects11020133
Bunse M, Daniels R, Gründemann C, Heilmann J, Kammerer DR, Keusgen M, Lindequist U, Melzig MF, Morlock GE, Schulz H, Schweiggert R, Simon M, Stintzing FC, Wink M. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front Pharmacol. 2022; 13:956541. Doi: https://www.frontiersin.org DOI: https://doi.org/10.3389/fphar.2022.956541
Bitwell C, Indra S, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023; 19:01585. Doi: https://doi.org/10.1016/j.sciaf.2023.e01585 DOI: https://doi.org/10.1016/j.sciaf.2023.e01585
Samadi M, Zainal Abidin Z, Yoshida H, Yunus R, Awang Biak DR. Towards higher oil yield and quality of essential oil extracted from Aquilaria malaccensis wood via the subcritical technique. Molecules. 2020; 25(17). Doi: https://doi.org/10.3390/molecules25173872 DOI: https://doi.org/10.3390/molecules25173872
Tzanova M, Atanasov V, Yaneva Z, Ivanova D, Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes. 2020; 8(10):1–30. Doi: https://doi.org/10.3390/pr8101222 DOI: https://doi.org/10.3390/pr8101222
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods. 2024; 13(19):1–21. Doi: https://doi.org/10.3390/foods13193151 DOI: https://doi.org/10.3390/foods13193151
Souiy Z. Essential oil extraction process. Biochemistry. IntechOpen. 2023; Doi: https://doi.org/10.5772/intechopen.113311 DOI: https://doi.org/10.5772/intechopen.113311
Lu Q, Huang N, Peng Y, Zhu C, Pan S. Peel oils from three Citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci Technol. 2019; 56(10):4492–4502. Doi: https://doi.org/10.1007/s13197-019-03937-w DOI: https://doi.org/10.1007/s13197-019-03937-w
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants. 2021; 10(9):1465. https://doi.org/10.3390/antiox10091465 DOI: https://doi.org/10.3390/antiox10091465
Sareriya KJ, Vanzara PB, Upadhyay. Methodology for extraction of essential oils: A review. Int J. Multidiscip Res. 2023; 5(4):1–2. Doi: https://doi.org/10.36948/ijfmr.2023.v05i04.5442 DOI: https://doi.org/10.36948/ijfmr.2023.v05i04.5442
Zhou W, Li J, Wang X, Liu L, Li Y, Song R, Zhang M, Li X. Research progress on extraction, separation, and purification methods of plant essential oils. Separations. 2023; 10(12):596. Doi: https://doi.org/10.3390/separations10120596 DOI: https://doi.org/10.3390/separations10120596
Najib MA, Kasiram MZ, Jamil N, Izani N, Dasuki M, Wan-Nor-Amilah WAW. Formulation containing Melaleuca cajuputi essential oil. Malays J Microbiol. 2024; 20(4):451–458. Doi: https://doi.org/10.21161/mjm.230245 DOI: https://doi.org/10.21161/mjm.230245
Isnaini I, Achmadiyah RD, Awaeh G, Khatimah H, Yasmina A. Antioxidant and antiproliferative activities of methanol extract from Melaleuca cajuputi subsp. cumingiana [Turcz.] fruit. J. Ilm. Berk. Sains Terap. Kim. (Online). 2023; 17(1):21. Doi: https://doi.org/10.20527/jstk.v17i1.13055 DOI: https://doi.org/10.20527/jstk.v17i1.13055
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024; 9(1). Doi: https://doi.org/10.1038/s41392-024-01856-7 DOI: https://doi.org/10.1038/s41392-024-01856-7
Dzobo K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology. 2022; 2:408–422. Doi: https://doi.org/10.1016/B978-0-12-820472-6.00041-4 DOI: https://doi.org/10.1016/B978-0-12-820472-6.00041-4
Permatasari HK, Subali AD, Yusuf M. Proapoptotic activity of essential oils from Syzygium aromaticum, Melaleuca cajuputi, and Cymbopogon nardus on HeLa human cervical cancer cells. J. Appl. Pharm. Sci. 2022; 12(12):84–94. Doi: https://doi.org/10.7324/JAPS.2022.121209 DOI: https://doi.org/10.7324/JAPS.2022.121209
Agnesia P, Herawati E, Pratiwi R. Anticancer activity of mackerel scad (Decapterus macarellus) fish oil on colorectal cancer cell lines. Trop J. Nat Prod Res. 2025; 1981. Doi: https://doi.org/10.26538/tjnpr/v9i5.15 DOI: https://doi.org/10.26538/tjnpr/v9i5.15
Yahya AK, Abd Wahab NZ, Ibrahim N. Bioactive compounds of plant essential oils and their antiviral properties: A comprehensive review. Malays. J. Chem. 2024; 26(4), 123-136. Doi: https://doi.org/10.55373/mjchem.v26i4.123 DOI: https://doi.org/10.55373/mjchem.v26i4.123
Abd Wahab NZ, Ja’afar NSA, Ismail SB. Evaluation of antibacterial activity of essential oils of Melaleuca cajuputi Powell. J. Pure Appl Microbiol. 2022; 16(1):549–556. Doi: https://doi.org/10.22207/JPAM.16.1.52 DOI: https://doi.org/10.22207/JPAM.16.1.52
Abd Wahab NZ, Noor Azam SNA, Sayed Abdul Kadir SMSF, Abdullah MH. Evaluation of antimicrobial and sporicidal activities, and stability testing of herbal skin wash preparations from Melaleuca cajuputi subsp. cumingiana essential oils and Kyllinga nemoralis aqueous extract. Trop J. Nat Prod Res. 2025; 9(1):14-23. Doi: https://doi.org/10.26538/tjnpr/v9i1.3 DOI: https://doi.org/10.26538/tjnpr/v9i1.3
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential oils and their main chemical components: The past 20 years of preclinical studies in melanoma. Cancers. 2020; 12:2650-2652. Doi: https://doi.org/10.3390/cancers12092650 DOI: https://doi.org/10.3390/cancers12092650
Abdoul-Latif FM, Ainane A, Aboubaker IH, Mohamed J, Ainane T. Exploring the potent anticancer activity of essential oils and their bioactive compounds: Mechanisms and prospects for future cancer therapy. Pharmaceuticals. 2023; 16(8):1086. Doi: https://doi.org/10.3390/ph16081086 DOI: https://doi.org/10.3390/ph16081086
Gautam N, Mantha AK, Sunil Mittal. Essential oils and their constituents as anticancer agents: A mechanistic view. Biomed Res Int. 2014; 2014(154106): 23. Doi: http://dx.doi.org/10.1155/2014/154106 DOI: https://doi.org/10.1155/2014/154106
Rezaieseresht H, Shobeiri SS, Kaskani A. Chenopodium botrys essential oil as a source of sesquiterpenes to induce apoptosis and G1 cell cycle arrest in cervical cancer cells. PubMed. 2020; 19(2):341–351. Doi: https://doi.org/10.22037/ijpr.2019.1100671
Sharma M, Grewal K, Jandrotia R, Daizy RB, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother. 2021; 146:112514. Doi: https://doi.org/10.1016/j.biopha.2021.112514 DOI: https://doi.org/10.1016/j.biopha.2021.112514
Fernandes Y, Matos J, Lima C, Tardini A, Viera F, Maia J, Monteiro O, Longato G, Rocha C. Essential oils obtained from Aerial eugenia punicifolia parts: Chemical composition and antiproliferative potential evidenced through cell cycle arrest. J. Braz Chem Soc. 2021; Doi: https://doi.org/10.21577/0103-5053.20210036 DOI: https://doi.org/10.21577/0103-5053.20210036
Chung K, Hong JY, Lee J, Lee H, Park JY, Choi J, Park H, Hong J, Lee K. β-caryophyllene in the essential oil from Chrysanthemum boreale induces G1 phase cell cycle arrest in human lung cancer cells. Molecules. 2019; 24(20):3754. Doi: https://doi.org/10.3390/molecules24203754 DOI: https://doi.org/10.3390/molecules24203754
Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci. 2009; 122(16):2801–2808. Doi: https://doi.org/10.1242/jcs.038166 DOI: https://doi.org/10.1242/jcs.038166
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: activation and inhibition in health and disease. Med Sci. 2018; 6(54). Doi: https://doi.org/10.3390/medsci6030054 DOI: https://doi.org/10.3390/medsci6030054
Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. 2013; 6(19):546–558. Doi: https://doi.org/10.1089/ars.2012.4905 DOI: https://doi.org/10.1089/ars.2012.4905
Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 95–118. Doi: https://doi.org/10.1146/annurev-genet-102108-134850 DOI: https://doi.org/10.1146/annurev-genet-102108-134850
Ahmadpour V, Modarresi M, Eftekhari M, Saeedi M, Karimi N, Rasekhian M. Chemical composition of essential and fixed oils of Tagetes erecta fruits (Iran) and their implications in inhibition of cancer signaling. Sci. Rep. 2024; 14(1). Doi: https://doi.org/10.1038/s41598-024-70582-5 DOI: https://doi.org/10.1038/s41598-024-70582-5
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J. Transl Med. 2024; 22(1). Doi: https://doi.org/10.1186/s12967-024-05998-8 DOI: https://doi.org/10.1186/s12967-024-05998-8
Cao Y, Yi Y, Han C, Shi B. NF-kB signaling pathway in tumor microenvironment. In Federico Gomez Children’s Hospital (Ed.), Front Immunol. 2024; Doi: https://doi.org/10.3389/fimmu.2024.1476030 DOI: https://doi.org/10.3389/fimmu.2024.1476030
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers. 2021; 13(16):3949. Doi: https://doi.org/10.3390/cancers13163949 DOI: https://doi.org/10.3390/cancers13163949
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021; 6:263. Doi: https://doi.org/10.1038/s41392-021-00658-5 DOI: https://doi.org/10.1038/s41392-021-00658-5
Wani AK, Akhtar N, Mir TuG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A, Devkota HP, Prakash A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules. 2023, 13(2), 194. https://doi.org/10.3390/biom13020194 DOI: https://doi.org/10.3390/biom13020194
Duaa YK, Omar MH. Anti-inflammatory and antioxidant activity of rosemary essential oil. J. Angiother. 2024; 8(4):1-6. Doi: https://doi.org/10.25163/angiotherapy.849609 DOI: https://doi.org/10.25163/angiotherapy.849609
Chen X, Shang S, Yan F, Jiang H, Zhao G, Tian S, Chen R, Chen D, Dang Y. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress. Molecules. 2023; 28(11):4559. Doi: https://doi.org/10.3390/molecules28114559 DOI: https://doi.org/10.3390/molecules28114559
Ren P, Ren X, Cheng L, Xu L. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer. Oncol. Rep. 2017; Doi: https://doi.org/10.3892/or.2017.6067 DOI: https://doi.org/10.3892/or.2017.6067
Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther. 2018; 17(6):1147–1155. Doi: https://doi.org/10.1158/1535-7163.mct-17-0646 DOI: https://doi.org/10.1158/1535-7163.MCT-17-0646
Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: A review. Front Mol Biosci. 2022; 9. Doi: https://doi.org/10.3389/fmolb.2022.896099 DOI: https://doi.org/10.3389/fmolb.2022.896099
Hassan ZK, Elamin MH, Daghestani MH, Omer SA, Al-Olayan EM, Elobeid MA, Virk P, Mohammed OB. Oleuropein induces anti-metastatic effects in breast cancer. Asian Pac J. Cancer Prev. 2012; 13(9):4555–4559. Doi: https://doi.org/10.7314/apjcp.2012.13.9.4555 DOI: https://doi.org/10.7314/APJCP.2012.13.9.4555
Russo R, Corasaniti MT, Bagetta G, Morrone LA. Exploitation of cytotoxicity of some essential oils for translation in cancer therapy. Evid-based Complementary Altern Med. 2015; 1–9. Doi: https://doi.org/10.1155/2015/397821 DOI: https://doi.org/10.1155/2015/397821
Jamali T, Ardestani SK. Investigating anti-cancer, anti-oxidant and immunomodulatory effects of essential oils: focusing on Oliveria decumbens and Zataria multiflora essential oils. Immunoregulation. 2024; 6(1):13–28. Doi: https://doi.org/10.32598/immunoregulation.6.1.6 DOI: https://doi.org/10.32598/Immunoregulation.6.1.6
Rohilla S, Singh S, Hazra A. Essential Oils: A Natural Therapy for the Treatment of Cancer. Pharmacogn. Rev. 2023; 17(34):296–307. Doi: https://doi.org/10.5530/phrev.2023.17.9 DOI: https://doi.org/10.5530/phrev.2023.17.9
Marx W, McCarthy AL, Ried K, Vitetta L, McKavanagh D, Thomson D, Sali A, Isenring L. Can ginger ameliorate chemotherapy-induced nausea? Protocol of a randomized double blind, placebo-controlled trial. BMC Complement Altern Med. 2014; 14(1). Doi: https://doi.org/10.1186/1472-6882-14-134 DOI: https://doi.org/10.1186/1472-6882-14-134
Volpes S, Cruciata I, Ceraulo F, Schimmenti C, Naselli F, Pinna C, Mauro M, Picone P, Dallavalle S, Nuzzo D, Pinto A, Caradonna F. Nutritional epigenomic and DNA-damage modulation effect of natural stilbenoids. Sci. Rep. 2023; 13(1). Doi: https://doi.org/10.1038/s41598-022-27260-1 DOI: https://doi.org/10.1038/s41598-022-27260-1
Qadi SA, Hassan MA, Sheikh RA, Baothman OA, Zamzami MA, Choudhry H, Al-Malki AL, Albukhari A, Alhosin M. Thymoquinone-induced reactivation of tumor suppressor genes in cancer cells involves epigenetic mechanisms. Epigenet Insights. 2019; 4;12:2516865719839011. Doi: https://doi.org/10.1177/2516865719839011 DOI: https://doi.org/10.1177/2516865719839011
Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget. 2018; 9(64):32305-32320. Doi: https://www.oncotarget.com DOI: https://doi.org/10.18632/oncotarget.25955
Aras A, Iqbal MJ, Naqvi SK, Gercek YC, Boztas K, Gasparri ML, Shatynska-Mytsyk I, Fayyaz S, Farooqi AA. Anticancer activity of essential oils: targeting of protein networks in cancer cells. Asian Pac J. Cancer Prev. 2014; 15(19):8047–8050. Doi: https://doi.org/10.7314/apjcp.2014.15.19.8047 DOI: https://doi.org/10.7314/APJCP.2014.15.19.8047
Mandal D, Patel P, Verma SK, Sahu BR, Parija T. Proximal discrepancy in intrinsic atomic interaction arrests G2/M phase by inhibiting Cyclin B1/CDK1 to infer molecular and cellular biocompatibility of d-limonene. Sci Rep. 2022;12(1):18184. Doi: https://doi.org/10.1038/s41598-022-21364-4 DOI: https://doi.org/10.1038/s41598-022-21364-4
Miller JA, Lang JE, Ley M, Nagle R, Hsu C, Thompson PA, Cordova C, Waer A, Chow HS. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer. Cancer Prev Res. 2013; 6(6):577–584. Doi: https://doi.org/10.1158/1940-6207.capr-12-0452 DOI: https://doi.org/10.1158/1940-6207.CAPR-12-0452
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor effects of carvacrol and thymol: A systematic review. Front. Pharmacol. 12:702487. Doi: https://doi.org/10.3389/fphar.2021.702487 DOI: https://doi.org/10.3389/fphar.2021.702487
Suhail MM, Wu W, Cao A, Mondalek FG, Fung K, Shih P, Fang Y, Woolley C, Young G, Lin H. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med. 2011; 11(1). Doi: https://doi.org/10.1186/1472-6882-11-129 DOI: https://doi.org/10.1186/1472-6882-11-129
Spyridopoulou K, Tiptiri-Kourpeti A, Lampri E, Fitsiou E, Vasileiadis S, Vamvakias M, Bardouki H, Goussia A, Malamou-Mitsi V, Panayiotidis MI, Galanis A, Pappa A, Chlichlia K. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017; 7(1):3782. Doi: https://doi.org/10.1038/s41598-017-03971-8 DOI: https://doi.org/10.1038/s41598-017-03971-8
Kozics K, Mesárošová M, Šramková M, Bučková M, Puškárová A, Galová D, Pangallo D. Evaluation of bioactivity of essential oils: Cytotoxic/genotoxic effects on colorectal cancer cell lines, antibacterial activity, and survival of lactic acid bacteria. Molecules. 2025; 30(4):890. Doi: https://doi.org/10.3390/molecules30040890 DOI: https://doi.org/10.3390/molecules30040890
Petrocelli G, Farabegoli F, Valerii MC, Giovannini C, Sardo A, Spisni E. Molecules present in plant essential oils for prevention and treatment of colorectal cancer (CRC). Molecules. 2021; 26(4):885. Doi: https://doi.org/10.3390/molecules26040885 DOI: https://doi.org/10.3390/molecules26040885
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing anti-tumorigenic efficacy of eugenol in human colon cancer cells using enzyme-responsive nanoparticles. Cancers. 2023; 15(4):1145. Doi: https://doi.org/10.3390/cancers15041145 DOI: https://doi.org/10.3390/cancers15041145
Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021; 11(1):13178. Doi: https://doi.org/10.1038/s41598-021-92679-x DOI: https://doi.org/10.1038/s41598-021-92679-x
Ghaffari T, Asnaashari S, Irannejad E, Delazar A, Farajnia S, Hong J, Pang C, Hamishehkar H, Kim KH. comparative evaluation of apoptosis induction using needles, bark, and pollen extracts and essential oils of Pinus eldarica in lung cancer cells. Appl Sci. 2021; 11(13):5763. Doi: https://doi.org/10.3390/app11135763 DOI: https://doi.org/10.3390/app11135763
Gökhan A. Evaluation of cytotoxic, membrane damaging and apoptotic effects of Origanum majorana essential oil on lung cancer and epidermoid carcinoma cells. Cyprus J Med Sci 2022. 7(2):201-206. Doi: https://doi.org/10.4274/cjms.2021.2021-142 DOI: https://doi.org/10.4274/cjms.2021.2021-142
Byahatti S, Bogar C, Bhat K, Dandagi G. Evaluation of anticancer activity of Melaleuca alternifolia. (i. e. tea tree oil) on leukemia cancer cell line (K562): An in vitro study. J. Med Plants Stud. 2018; 6(5):1–6. DOI: https://doi.org/10.26463/rjms.9_1_8
Di Martile M, Garzoli S, Sabatino M, Valentini E, D’Aguanno S, Ragno R, Del Bufalo D. Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Discov. 2021; 7(1):127. Doi: https://doi.org/10.1038/s41420-021-00510-3 DOI: https://doi.org/10.1038/s41420-021-00510-3
Aziz O, Suleman A, Fatima Z, Yasin A, Nasir A, Ubaid M, Shahbaz H, Rafiq MF, Khaliq HMH, Sehar A, Bukhari SFS. Eugenol’s molecular warfare against human leukemia K562 cells: In vitro insights to chemotherapeutic potentials. J. Health Rehabil. Res. 2024; 4(1):943–949. Doi: https://doi.org/10.61919/jhrr.v4i1.536 DOI: https://doi.org/10.61919/jhrr.v4i1.536
Khaliq HMH, Bughio R, Nangdev P, Aziz O, Javed W. Integrating eugenol with intensive care in leukemia patients: exploration of pro-apoptotic potential against HL-60, human leukemia cell line. Anaesth Pain Intensive Care. 2024; 28(5):871–875. Doi: https://doi.org/10.35975/apic.v28i5.2491 DOI: https://doi.org/10.35975/apic.v28i5.2491
Wadood M, Zafar S, Anwar B, Bhatti M, Ali S, Niaz M, Ali MA. Interlinking leukemia cell lines with clinicopathological therapeutics: Exploring eugenol’s anti-cancer potential for leukemia and its types. Pakistan J. Health Sci. 2024; 5(12),339–346. Doi: https://doi.org/10.54393/pjhs.v5i12.2536 DOI: https://doi.org/10.54393/pjhs.v5i12.2536
Quintero-García WL, Espinel-Mesa DX, Moreno EM, Stashenko E, Mesa-Arango AC, García LT. Enhancing selectivity and inhibitory effects of chemotherapy drugs against myelogenous leukemia cells with Lippia alba essential oil enriched in citral. Int J. Mol Sci. 2024; 25(16):8920. Doi: https://doi.org/10.3390/ijms25168920 DOI: https://doi.org/10.3390/ijms25168920
Saito N, Hirai N, Koyahara Y, Hiramoto Y, Fujita S, Nakayama H, Hayashi M, Ito K, Iwabuchi S. 10082- et-9 antitumor aroma therapy with frankincense essential oil for glioblastoma. Neuro-Oncol Adv. 2024; 6(4):5. Doi: https://doi.org/10.1093/noajnl/vdae173.018 DOI: https://doi.org/10.1093/noajnl/vdae173.018
Chang K, Chang JT, Huang X, Huang Y, Li C, Weng J, Hsiao C, Hsu H, Tsai N. Cedrus atlantica extract suppress glioblastoma growth through promotion of genotoxicity and apoptosis: In vitro and in vivo studies. Int J. Med Sci. 2021; 18(11):2417–2430. Doi: https://doi.org/10.7150/ijms.54468 DOI: https://doi.org/10.7150/ijms.54468
Gu H, Yi T, Lin P, Hu J. Study on essential oil, antioxidant activity, anti-human prostate cancer effects, and induction of apoptosis by Equisetum arvense. Open Chemistry. 2022; 20(1):1187–1195. Doi: https://doi.org/10.1515/chem-2022-0203 DOI: https://doi.org/10.1515/chem-2022-0203
Bommareddy A, Oberlin J, Blankenhorn K, Hughes S, Mabry E, Knopp A, VanWert A, Dwivedi C, Pinkerton I, Gutierrez L. Alpha-santalol, a derivative of sandalwood oil prevents development of prostate cancer in TRAMP mice. Phytomed. Plus. 2024; 100523. Doi: https://doi.org/10.1016/j.phyplu.2024.100523 DOI: https://doi.org/10.1016/j.phyplu.2024.100523
Boța M, Vlaia L, Jîjie A, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă E. Exploring synergistic interactions between natural compounds and conventional chemotherapeutic drugs in preclinical models of lung cancer. Pharmaceuticals. 2024; 17(5):598. Doi: https://doi.org/10.3390/ph17050598 DOI: https://doi.org/10.3390/ph17050598
Hamzah EF, Al-Mussawy AN, Al-Azawi RSA, Al-Shukri H. The role of herbals in complementary and alternative cancer therapies: A critical review. South Asian Res J. Appl Med Sci. 2024; 6(04):122–127. Doi: https://doi.org/10.36346/sarjams.2024.v06i04.007 DOI: https://doi.org/10.36346/sarjams.2024.v06i04.007
Zhou H, Zhang M, Cao H, Du X, Zhang X, Wang J, Bi X. Research progress on the synergistic anti-tumor effect of natural anti-tumor components of Chinese herbal medicine combined with chemotherapy drugs. Pharmaceuticals. 2023; 16(12):1734. Doi: https://doi.org/10.3390/ph16121734 DOI: https://doi.org/10.3390/ph16121734
Viktorová J, Stupák M, Řehořová K, Dobiasová S, Hoang L, Hajšlová J, Van Thanh T, Van Tri L, Van Tuan N, Ruml T. Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral - Its dominant and strongly antimicrobial compound. Foods. 2020; 9(5):585. Doi: https://doi.org/10.3390/foods9050585 DOI: https://doi.org/10.3390/foods9050585
Al-Balushi RA, Chaudhuri A, Kandimalla R, Haque A, Alenezi KM, Saeed M, Changez M, Harthy TA, Hinaai MA, Siddiqui S, Agrawal AK, Aqil F. In vitro anticancer effects of frankincense and its nanoemulsions for enhanced cancer cell targeting. Front Pharmacol. 2025; 16:1403780. Doi: https://doi.org/10.3389/fphar.2025.1403780 DOI: https://doi.org/10.3389/fphar.2025.1403780
Naksawat M, Norkaew C, Charoensedtasin K, Roytrakul S, Tanyong D. Anti-leukemic effect of menthol, a peppermint compound, on induction of apoptosis and autophagy. PeerJ. 2023; 11:15049. Doi: https://doi.org/10.7717/peerj.15049 DOI: https://doi.org/10.7717/peerj.15049
Zick SM, Ruffin MT, Lee J, Normolle DP, Siden R, Alrawi S, Brenner DE. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support Care Cancer. 2008; 17(5):563–572. Doi: https://doi.org/10.1007/s00520-008-0528-8 DOI: https://doi.org/10.1007/s00520-008-0528-8
Crichton M, Marshall S, Isenring E, Lohning A, McCarthy AL, Molassiotis A, Bird R, Shannon C, Koh A, McPherson I, Marx W. Effect of a standardized ginger root powder regimen on chemotherapy-induced nausea and vomiting: a multicenter, double-blind, placebo-controlled randomized trial. J. Acad Nutr Diet. 2023; 124(3):313-330. Doi: https://doi.org/10.1016/j.jand.2023.09.003 DOI: https://doi.org/10.1016/j.jand.2023.09.003
Dajic Stevanovic Z, Sieniawska E, Glowniak K, Obradovic N, Pajic-Lijakovic I. Natural macromolecules as carriers for essential oils: from extraction to biomedical application. Front Bioeng Biotechnol. 2020; 8:563. Doi: https://doi.org/10.3389/fbioe.2020.00563 DOI: https://doi.org/10.3389/fbioe.2020.00563
Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics. 2021; 13(3):327. Doi: https://doi.org/10.3390/pharmaceutics13030327 DOI: https://doi.org/10.3390/pharmaceutics13030327
Maes C, Bouquillon S, Fauconnier M. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 2019; 24(14):2539. Doi: https://doi.org/10.3390/molecules24142539 DOI: https://doi.org/10.3390/molecules24142539
Sæbø IP, Bjørås M, Franzyk H, Helgesen E, Booth JA. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J. Mol Sci. 2023; 24:2914. Doi: https://doi.org/10.3390/ijms24032914 DOI: https://doi.org/10.3390/ijms24032914
Capetti F, Marengo A, Cagliero C, Liberto E, Bicchi C, Rubiolo P, Sgorbini B. Adulteration of essential oils: A multitask issue for quality control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules. 2021; 26(18):5610. Doi: https://doi.org/10.3390/molecules26185610 DOI: https://doi.org/10.3390/molecules26185610
Joppi R, Bertele V, Vannini T, Garattini S, Banzi R. Food and drug administration vs european medicines agency: Review times and clinical evidence on novel drugs at the time of approval. Br J. Clin Pharmacol. 2019; 86(1):170–174. Doi: https://doi.org/10.1111/bcp.14130 DOI: https://doi.org/10.1111/bcp.14130
Nurzyńska-Wierdak R, Walasek-Janusz M. Chemical composition, biological activity, and potential uses of oregano (Origanum vulgare L.) and oregano essential oil. Pharmaceuticals. 2025; 18(2):267. Doi: https://doi.org/10.3390/ph18020267 DOI: https://doi.org/10.3390/ph18020267
Nasseri M, Golmohammadzadeh S, Arouiee H, Jaafari MR, Neamati H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Directory of Open Access Journals. 2016; 19(11):1231–1237. Doi: https://doaj.org/article/ad7d91a80dff4b0aa5371ab53e098ff9
Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid-based Complement Altern Med. 2014; 2014:651593. Doi: https://doi.org/10.1155/2014/651593 DOI: https://doi.org/10.1155/2014/651593
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020; 25(20):4613. Doi: https://doi.org/10.3390/molecules25204613 DOI: https://doi.org/10.3390/molecules25204613
Ai Z, Liu B, Chen J, Zeng X, Wang K, Tao C, Chen J, Yang L, Ding Q, Zhou M. Advances in nano drug delivery systems for enhanced efficacy of emodin in cancer therapy. Int J. Pharma. 2024; X 9:100314. Doi: https://doi.org/10.1016/j.ijpx.2024.100314 DOI: https://doi.org/10.1016/j.ijpx.2024.100314
Ly P, Ly K, Phan H, Nguyen HHT, Duong V, Nguyen HV. Recent advances in surface decoration of nanoparticles in drug delivery. Front. Pharmacol. 2021; 12:702487. Doi: https://doi.org/10.3389/fnano.2024.1456939 DOI: https://doi.org/10.3389/fnano.2024.1456939
Abdessalem MA, Adham SA. Research advancements in nanoparticles and cell-based drug delivery systems for the targeted killing of cancer cells. Oncol Res. 2024;33(1):27-44. Doi: https://doi.org/10.32604/or.2024.056955 DOI: https://doi.org/10.32604/or.2024.056955
Duong H, Dinh KB, Luu T, Chapman J, Baji A, Truong VK. Nanoengineered sustainable antimicrobial packaging: Integrating essential oils into polymer matrices to combat food waste. Int J. Food Sci Tech. 2024; 59(9):5887–5901. Doi: https://doi.org/10.1111/ijfs.17364 DOI: https://doi.org/10.1111/ijfs.17364
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018; 9(1):1410. Doi: https://doi.org/10.1038/s41467-018-03705-y DOI: https://doi.org/10.1038/s41467-018-03705-y
Scuteri D, Watanabe C, Sakurada S, Hamamura K, Sakurada T, Tonin P, Bagetta G, Corasaniti MT. Pharmacotechnological advances for clinical translation of essential oils for the treatment of pain and agitation in severe dementia. Processes. 2022; 10(7):1340. Doi: https://doi.org/10.3390/pr10071340 DOI: https://doi.org/10.3390/pr10071340
Kashyap R. Exploring the molecular mechanisms and therapeutic potentials of essential oils: A systems biology approach. Future Integr Med. 2024; 3(2):116–131. Doi: https://doi.org/10.14218/fim.2023.00071 DOI: https://doi.org/10.14218/FIM.2023.00071
De Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, De Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential oils: Chemistry and pharmacological activities. Biomolecules. 2023; 13(7):1144. Doi: https://doi.org/10.3390/biom13071144 DOI: https://doi.org/10.3390/biom13071144
Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012; 17(4):53989–4006. Doi: https://doi.org/10.3390/molecules17043989 DOI: https://doi.org/10.3390/molecules17043989


