Potential of Isothiocyanates from Moringa as Antiobesity: A Review

Main Article Content

Surahmat Hamid
Nurfaiqa hardjo
Sukaeni Ibrahim
Ilhamuddin Azis
Mirna Muis
Ika Yustisia
Syahrijuita Kadir
Marhaen Hardjo

Abstract

Phytotherapy is one example of an alternative therapy that is thought to help individuals with chronic non-communicable illnesses. Moringa oleifera (Mo) is now being investigated in this area for its total phenolic content and nutritional benefits. In addition to phenolic chemicals, there is a lot of interest in the phytochemical makeup. The presence of isothiocyanates and glucosinolates characterizes this composition. The extra sugar in the isothiocyanates produced by the biotransformation of Moringa glucosinolates gives these bioactive chemicals stability over other isothiocyanates derived from other crops. Isothiocyanates have been reported to be effective in preventing and improving some chronic diseases such as obesity which has a fairly high prevalence. Separation of Isothiocyanate compounds in Moringa tissue can be improved by certain separation techniques, which are modified. This review aims to highlight certain separation techniques and study the properties and potential use of Moringa isothiocyanate (MITC) as a drug against obesity through various methods. MITC compound found in Moringa extract can reduce liver fat accumulation, body weight, fat weight, and fat tissue estimation. In addition, MITC can increase HDL levels while decreasing TC, TG, LDL, and VLDL. In addition, leptin, vaspin, and resistin levels were all decreased by MITC. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Ilhamuddin Azis, Master Program of Biomedical Sciences, Graduate School Hasanuddin University, Hasanuddin University, Makassar, South Sulawesi, Indonesia

Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia  

Mirna Muis, Master Program of Biomedical Sciences, Graduate School Hasanuddin University, Hasanuddin University, Makassar, South Sulawesi, Indonesia 

Department of Histology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia 

Ika Yustisia, Master Program of Biomedical Sciences, Graduate School Hasanuddin University, Hasanuddin University, Makassar, South Sulawesi, Indonesia 

Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia  

Syahrijuita Kadir, Master Program of Biomedical Sciences, Graduate School Hasanuddin University, Hasanuddin University, Makassar, South Sulawesi, Indonesia 

Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia  

Marhaen Hardjo, Master Program of Biomedical Sciences, Graduate School Hasanuddin University, Hasanuddin University, Makassar, South Sulawesi, Indonesia 

Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia  

How to Cite

Potential of Isothiocyanates from Moringa as Antiobesity: A Review . (2025). Tropical Journal of Natural Product Research , 9(7), 2933 – 2940. https://doi.org/10.26538/tjnpr/v9i7.1

References

Castillo-López RI, León-Félix J, Angulo-Escalante MA, Gutiérrez-Dorado R, Muy-Rangel MD, Heredia JB. Nutritional and phenolic characterization of Moringa oleifera leaves grown in Sinaloa, México. Pak J Bot. 2017; 49(1):161–168.

Devkota S, and Bhusal KK. Moringa oleifera: a miracle multipurpose tree for agroforestry and climate change mitigation from the Himalayas. Cogent Food Agric. 2020; 6 (1), 1–8. https://10.1080/23311932.2020.1805951. DOI: https://doi.org/10.1080/23311932.2020.1805951

Saucedo-Pompa S, Torres-Castillo JA, Castro-López C, Rojas R, Sánchez-Alejo EJ, Ngangyo-Heya, M Martínez-Ávila. Moringa plants: bioactive compounds and promising applications in food products. Food Res Int. 2018; 111:438–450. https://doi.org/10.1016/j.foodres.2018.05.062 DOI: https://doi.org/10.1016/j.foodres.2018.05.062

Choundhary MN, Surendra HB, Sanjay KG. Assessment of the Antiulcer Potential of Moringa oleifera Root-Bark Extract in Rats. J Acupunct. Meridian Stud. 2013; pISSN 2005-2901. eISSN 2093-8152. https://doi.org/10.1016/j.jams.2013.07.003 DOI: https://doi.org/10.1016/j.jams.2013.07.003

Gopalakrishnan P, Sundaresan K, Rajagopalan S. Phytochemical analysis of Moringa oleifera leaves. J Pharm Res, 2016; 9(1), 161-164.

Igwilo U, Nwokedi CO, Ogunsanwo O. Nutritional and phytochemical composition of Moringa oleifera leaves, pods, and roots. J Agric Food Chem. 2017; 65(34), 6366-6373.

Fahey JW, Olson ME, Stephenson KK, Wade KL, Chodur GM, Odee D, Nouman W, Massiah M, Alt J, Egner PA, Hubbard WC. The diversity of chemoprotective glucosinolates in Moringaceae (Moringa spp). Sci Rep. 2018; 8(1):7994. https://doi.org/10.1038/s41598-018-26058-4 DOI: https://doi.org/10.1038/s41598-018-26058-4

Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry. 2014;103, 114–122. https://doi.org/10.1016/j.phytochem.2014.03.028 DOI: https://doi.org/10.1016/j.phytochem.2014.03.028

Kim Y, Jaja-Chimedza A, Merrill D, Mendes O, Raskin I. A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats. Toxicol Rep. 2018; 5:418–426. https://doi.org/10.1016/j.toxrep.2018.02.012 DOI: https://doi.org/10.1016/j.toxrep.2018.02.012

Gupta A, Kumar R., Singh R. Effect of Moringa oleifera root extract on lipid profile and lipase activity in high-fat diet-induced obese rats. J Pharm Pharmacol, 2021; 73(1), 1-12.

Aung Sumbono. Energy metabolism and obesity basic food biochemistry series. (2021) Main Budi: Yogyakarta.

World Health Organization. Obesity and overweight. [Online]. [2023, September 27]. Available from: https://www.who.int/news-room/factsheets/detail/obesity-and-overweight.

Saleem H, Al-Dujaily ANG, Al-Murshidi MHH. Effect of methanolic leaf extract of Moringa oleifera on biochemical markers in obesity-induced rats. Res J Pharm Biol Chem Sci. 2016; 7(3), 2222–2232

Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003; 51, 3546–3553. https://doi.org/10.1021/jf0211480 DOI: https://doi.org/10.1021/jf0211480

Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001; 56, 5–51. https://doi.org/10.1016/s0031-9422(00)00316-2 DOI: https://doi.org/10.1016/S0031-9422(00)00316-2

Citi V, Martelli A, Testai L, Marino A, Breschi MC, Calderone V. Hydrogen sulfide releasing capacity of natural isothiocyanates: Is it a reliable explanation for the multiple biological effects of Brassicaceae. Planta Med. 2014; 80, 610–613. https://doi.org/10.1055/s-0034-1368591 DOI: https://doi.org/10.1055/s-0034-1368591

Tumer TB, Rojas-Silva P, Poulev A, Raskin I, Waterman C. Direct and indirect antioxidant activity of polyphenol and isothiocyanate-enriched fractions from Moringa oleifera. J Agric Food Chem. 2015; 63, 1505–1513. https://doi.org/10.1021/jf505014n DOI: https://doi.org/10.1021/jf505014n

Mannelli LDC, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, Martelli A, Testai L, Taglialatela M, Calderone V. Effects of natural and synthetic isothiocyanate-based H2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology. 2017; 121, 49–59. https://doi.org/10.1016/j.neuropharm.2017.04.029 DOI: https://doi.org/10.1016/j.neuropharm.2017.04.029

Müller C, Van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015; 118, 139–148. https://doi.org/10.1016/j.phytochem.2015.08.007 DOI: https://doi.org/10.1016/j.phytochem.2015.08.007

Giacoppo S, Rajan TS, Iori R, Rollin P, Bramanti P, Mazzon E. The cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW264.7 macrophage cells through Akt and p38 inhibition. Inflamm Res. 2017; 66, 487–503. https://doi.org/10.1007/s00011-017-1033-7 DOI: https://doi.org/10.1007/s00011-017-1033-7

Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J, Bao W, Huang J, Mao J, Liu S, You Y. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. J Agric Food Chem. 2018; 66, 1509–1515. https://doi.org/10.1021/acs.jafc.7b05913 DOI: https://doi.org/10.1021/acs.jafc.7b05913

Biswas SK, Chowdury A, Das J, Roy A, Hosen SM. Pharmacological potential of Moringa oleifera Lam. Int J Pharm Sci Res. 2012; 3(2):305-310. http://dx.doi.org/10.13040/IJPSR.0975-8232.3(2).305-10 DOI: https://doi.org/10.13040/IJPSR.0975-8232.3(2).305-10

Oluduro, Anthonia, Olufunke. Evaluation of antimicrobial properties and nutritional potentials of Moringa oleifera Lam., leaf in South-Western Nigeria. Malaysian J Microbiol. 2012; 8(2):59-67. http://dx.doi.org/10.21161/mjm.02912 DOI: https://doi.org/10.21161/mjm.02912

Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J Sci Food Agric. 2018; 98, 1255–1260. https://doi.org/10.1002/jsfa.8654 DOI: https://doi.org/10.1002/jsfa.8654

Huang Q, Liu R, Liu J, Huang Q, Liu S, Jiang Y. Integrated Network Pharmacology analysis and experimental validation to reveal the mechanism of anti-insulin resistance effects of Moringa oleifera seeds. Drug Des Dev Ther. 2020; 14, 4069–4084. https://doi.org/10.2147/dddt.s265198 DOI: https://doi.org/10.2147/DDDT.S265198

Wang X, Liu Y, Liu X, Lin Y, Zheng X, Lu Y. Hydrogen Sulfide (H2S) Releasing Capacity of Isothiocyanates from Moringa oleifera Lam. Molecules. 2018; 23, 2809. https://doi.org/10.3390%2Fmolecules23112809 DOI: https://doi.org/10.3390/molecules23112809

Jaja-Chimedza A, Zhang L, Wolff K, Garf BL, Kuhn P, Moskal K, Raskin I. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J Funct Foods. 2018; 47, 376–385. https://doi.org/10.1016/j.jff.2018.05.056 DOI: https://doi.org/10.1016/j.jff.2018.05.056

El-Kholy K, Barakat SA, Morsy W, Abdel-Maboud K, Seif-Elnaser M, Ghazal MN. Effect of aqueous extract of Moringa oleifera leaves on some production performance and microbial ecology of the gastrointestinal tract in growing rabbits. Pak J Nutr. 2018; 17:1–7. https://doi.org/10.3923/pjn.2018.1.7 DOI: https://doi.org/10.3923/pjn.2018.1.7

Jaiswal DPK, Rai S, Mehta S, Chatterji S, Shukla DK, Rai, G Watal. Role of Moringa oleifera leaves with a new anticancer activity. Plos One. 2013; 9:e95492. DOI: https://doi.org/10.1371/journal.pone.0095492

Kawashiwada Y, FA Ahmed, SI Kurimoto, SY Kim, H Shibata, T Fujioka, Y Takaishi. New α-glucosides of caffeoyl quinic acid from the leaves of Moringa oleifera Lam. J Nut Med. 2012; 66: 217-221. https://doi.org/10.1007/s11418-011-0563-5 DOI: https://doi.org/10.1007/s11418-011-0563-5

Vongsak B, Sithisarn P, and Wandee G. Bioactive contents and free radical scavenging activity of Moringa oleifera leaf extract under different storage conditions. Ind Crops Prod. 2013; 49:419– 421. http://dx.doi.org/10.1016/j.indcrop.2013.05.018 DOI: https://doi.org/10.1016/j.indcrop.2013.05.018

Od-Ek P, Deenin W, Malakul W, Phoungpetchara I, Tunsophon S. Antiobesity effect of Carica papaya in high-fat diet fed rats. Biomed Rep. 2020; 13(30). https://doi.org/10.3892/br.2020.1337. DOI: https://doi.org/10.3892/br.2020.1337

Ogbunugator HA, Eneh AN, Ozumba MN, Igwo-Ezkipe J, Okpuzor IO, Igwilo, OA Onyekwelu. Physico-chemical and antioxidant properties of Moringa oleifera seed oil. Pak J Nut. 2011; 10: 409-414. http://dx.doi.org/10.3923/pjn.2011.409.414 DOI: https://doi.org/10.3923/pjn.2011.409.414

Singh RG, Negi, C Radha. Phenolic composition, antioxidant, and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J Funct Foods. 2013; 5: 1883-1891. http://dx.doi.org/10.1016/j.jff.2013.09.009 DOI: https://doi.org/10.1016/j.jff.2013.09.009

Alhabeeb MK, and H Fawzy G. Comparing the effect of Moringa aqueous extract and selenium nanoparticles against complications of type 2 diabetes mellitus. Pak J Biol Sci. 2023. https://doi.org/10.3923/pjbs.2023.249.265. DOI: https://doi.org/10.3923/pjbs.2023.249.265

Safaa MA, Nora ME, Hanem AS, Huda MI. Moringa, rosemary, and purslane leave extracts alleviate metabolic syndrome in rats induced by high fat-high fructose diet. Pak J Biol Sci. 2021; (10):1022-1033. https://doi.org/10.3923/pjbs.2021.1022.1033 DOI: https://doi.org/10.3923/pjbs.2021.1022.1033

Jain PG, Patil SD, Haswani NG, Girase MV, Surana SJ. Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high-fat diet-induced hyperlipidemia in albino rats. Rev Bras Farmacogn. 2010; 20(6), 969–973. https://doi.org/10.1590/S0102-695X2010005000038. DOI: https://doi.org/10.1590/S0102-695X2010005000038

Kim YJ, and Kim HS. Screening Moringa species focused on the development of locally available sustainable nutritional supplements. Nutr Res Pract. 2019; 13(6), 529–534. https://doi.org/10.4162/nrp.2019.13.6.529 DOI: https://doi.org/10.4162/nrp.2019.13.6.529

Madkhali HA, Alharthy KM, Asiri MA, Ansari MN, Rehman NU, Hamad AM. Moringa oleifera Lam. (Family Moringaceae) leaf extract attenuates high-fat diet-induced dyslipidemia and vascular endothelium dysfunction in Wistar albino rats. Trop J Pharm Res. 2019; 18(12), 2597–2604. http://dx.doi.org/10.4314/tjpr.v18i12.20

Xie J, Wang Y, Jiang WW, Luo XF, Dai TY, Peng L, Sheng J. Moringa oleifera leaf petroleum ether extract inhibits lipogenesis by activating the AMPK signaling pathway. Front Pharmacol. 2018;9 https://doi.org/10.3389/fphar.2018.01447. DOI: https://doi.org/10.3389/fphar.2018.01447

Al-Gebily M, Morsy F, Elzawahry E, Ibrahim D, Abdel-Wahhab K. Obesity modulating the efficiency of Moringa oleifera extract on obese modeled rats. Egypt Acad J Biol Sci C Physiol Mol Biol. 2019; 11(1), 75–91. https://doi.org/10.21608/eajbsc.2019.28305. DOI: https://doi.org/10.21608/eajbsc.2019.28305

Hussein SA, El-Senosi YA, El-Sharkawy GH. Moringa Oleifera improves lipid metabolic disorders in obesity-induced oxidative stress in rats. Benha Vet Med J. 2018; 35(2), 380–395. https://doi.org/10.21608/bvmj.2018.96443. DOI: https://doi.org/10.21608/bvmj.2018.96443

Othman AI, Amer MA, Basos AS, El-Missiry MA. Moringa oleifera leaf extract ameliorated high-fat diet-induced obesity, oxidative stress, and disrupted metabolic hormones. Clin Phytoscience. 2019; 5(48). https://doi.org/10.1186/s40816-019-0140-0 DOI: https://doi.org/10.1186/s40816-019-0140-0

Huang L, Yuan C, Wang Y. Bioactivity-guided identification of antiadipogenic isothiocyanates in the moringa (Moringa oleifera) seed and investigation of the structure-activity relationship. Molecules. 2020; 25(11). https://doi.org/10.3390/molecules25112504. DOI: https://doi.org/10.3390/molecules25112504

Sawmy GM, and Meriga B. The therapeutic effect of Moringa oleifera leaf extracts on oxidative stress and key metabolic enzymes related to obesity. Int J Pharm Sci Res. 2020; 11(4), 1949–1957. http://dx.doi.org/10.13040/IJPSR.0975-8232.11(4).1949-57 DOI: https://doi.org/10.13040/IJPSR.0975-8232.11(4).1949-57

Adisakwattana S, and Chanathong B. α-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. Eur Rev Med Pharmacol Sci. 2011; 15, 803–808. https://pubmed.ncbi.nlm.nih.gov/21780550/

Kilany OE, Abdel razek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge-Dawely rats. Saudi J Biol Sci. 2020; 27(10), 2733–2746. https://doi.org/10.1016/j.sjbs.2020.06.026. DOI: https://doi.org/10.1016/j.sjbs.2020.06.026

Ahmed HH, Metwally FM, Rashad H, Zaazaa AM, Ezzat SM, Salama MM. Moringa oleifera offers a multi-mechanistic approach for management of obesity in rats. Int J Pharm Sci Rev Res. 2014; 29(2), 98–106.

Metwally FM, Rashad HM, Ahmed HH, Mahmoud AA, Abdol Raouf ER, Abdalla AM. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac J Trop Biomed. 2016; 7(3), 214–221. http://dx.doi.org/10.1016/j.apjtb.2016.12.007 DOI: https://doi.org/10.1016/j.apjtb.2016.12.007

Ezzat SM, El Bishbishy MH, Aborehab NM, Salama MM, Hasheesh A, Abdel Motaal A, Metwally FM. Upregulation of MC4R and PPAR-α expression mediates the anti-obesity activity of Moringa oleifera Lam. in high-fat diet-induced obesity in rats. J Ethnopharmacol. 2020; 251(112541). https://doi.org/10.1016/j.jep.2020.112541 DOI: https://doi.org/10.1016/j.jep.2020.112541

Sarhat ER, Wadi SA, Mahmood AR. Effect of ethanolic extraction of Moringa oleifera on paraoxonase and arylesterase enzyme activity in high fat dietinduced obesity in rats. Res J Pharm. 2018; 11(10),4601–4604. https://doi.org/10.5958/0974-360X.2018.00842.9 DOI: https://doi.org/10.5958/0974-360X.2018.00842.9

Umar SA, Mohammed Z, Nuhu A, Musa KY, Tanko Y. Evaluation of hypoglycaemic and antioxidant activity of Moringa oleifera root in normal and alloxan-induced diabetic rats. Trop J Nat Prod Res. 2018; 2(8):401-408. http://dx.doi.org/10.26538/tjnpr/v2i8.6 DOI: https://doi.org/10.26538/tjnpr/v2i8.6

Owolabi MA, Ogah CO, Adebayo KO, Soremi EM. Evaluation of antidiabetic potential and biochemical parameters of aqueous pod extract of Moringa oleifera in alloxan diabetic rats. Trop J Nat Prod Res. 2020; 4(2):50-57. http://dx.doi.org/10.26538/tjnpr/v4i2.5 DOI: https://doi.org/10.26538/tjnpr/v4i2.5

Balusamy SR, Perumalsamy H, Ranjan A, Park S, Ramani S. A dietary vegetable, Moringa oleifera leaves (drumstick tree) induced fat cell apoptosis by inhibiting adipogenesis in 3T3-L1 adipocytes. J Funct Foods. 2019; 59, 251–260. https://doi.org/10.1016/j.jff.2019.05.029 DOI: https://doi.org/10.1016/j.jff.2019.05.029

Lahrita L, Kato E, Kawabata J. Uncovering the potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes. J Ethnopharmacol. 2015; 168, 229–236. https://doi.org/10.1016/j.jep.2015.03.082 DOI: https://doi.org/10.1016/j.jep.2015.03.082

Xie ES, Sangare MM, Behanzin GJ, Ategbo JM, Seri B, Khan NA. Moringa olifeira Lam. stimulates activation of the insulin-dependent Akt pathway. Antidiabetic effect in a diet-induced obesity (DIO) mouse model. Folia Biol (Praha). 2017; 63(2), 42–51. http://fb.cuni.cz/file/5837/fb2017a0008.pdf DOI: https://doi.org/10.14712/fb2017063020042