Vanillin Modulates the Status of Glycoconjugates in Favouur of Tumor Suppression in 7,12dimethylbenz[a]anthracene Induced Oral Carcinoma in Golden Syrian Hamster

doi.org/10.26538/tjnpr/v5i4.4

Authors

  • Insha Naseer Department of Zoology, Annamalai University, Tamil Nadu, India
  • Chakkaravarthy Elanchezhiyan Department of Zoology, Annamalai University, Tamil Nadu, India
  • Shanmugam Manoharan Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India
  • Towseef Hassan Department of Zoology, Annamalai University, Tamil Nadu, India
  • Mani Neelakandan Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India

Keywords:

Oral cancer, Vanillin, DMBA, Glycoconjugates, Hamster

Abstract

Vanillin (4-hydroxy-3-methoxybenzaldehyde), the major component of natural vanilla has been reported to show antimicrobial, anti- inflammatory, hepatoprotective and anticarcinogenic activities. In this study, the modulatory efficacy of vanillin on plasma and buccal mucosa glycoconjugates has been investigated in 7,12dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral tumors were induced in the hamster's buccal pouch using 0.5% DMBA, in liquid paraffin (topical application, three times a week for 14 weeks). Plasma and buccal mucosa glycoconjugates status were assessed colorimetrically in the experimental hamsters. While the glyco conjugates status was found to be abnormal in both the plasma and buccal mucosa, vanillin administration orally at the dose of 200 mg/kg b.w to hamsters treated with DMBA revertedthe glycoconjugates status to near normal concentration. The results obtained clearly exhibited the protective effect of vanillin on the cell surface and circulatory glycoconjugates in DMBA induced oral carcinoma. 

References

Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-674.

Pisani P, Bray F,Parkin DM. Estimates of the worldwide prevalence of cancer for 25 sites in the adult population. Int J Cancer 2002; 97(1):72-81.

Moore SR, Johnson NW, Pierce AM, Wilson DF. The epidemiology of mouth cancer: A review of global incidence. Oral Dis. 2000; 6(2):65-74.

Mc GonigleP and Ruggeri B. Animal models of human disease: challenges in enabling translation, BiochemPharmacol.2014; 87(1):162-171.

Ishida K, Tomita H, Nakashima T, , Hirata A, Tanaka T, Shibata T, Hara A.Current mouse models of oral squamous cell carcinoma: genetic and chemically induced models,oraloncol. 2017; 73(10):16-20.

Vairaktaris E, Spyridonidou S, Papakosta V, V. ylliotis A, Lazaris A, Perrea D, Yapijakis C, Patsouris E. Hamster model of sequential oral oncogenesis, Oral Oncol. 2008; 44(4):315-324.

Monti-Hughes A, Aromando RF, P´erez MA, Schwint AE, Itoiz ME. Hamster cheek pouch model for field cancerization studies, Periodontol. 2015; 67(1):292-311.

Nikitakis NG, Pentenero M,M. Georgaki, Poh CF, Peterson DE, Edwards P, Lingen M, Sauk JJ. Molecular markers associated with development and progression of potentially premalignant. Oral epithelial lesions: current knowledge and future implications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125(6):650-669.

Nagini S. The hamster buccal pouch carcinogenesis model as a paradigm for oral oncogenesis and chemoprevention. Anticancer Agents Med Chem. 2009; 9(8):843-852.

Miyata M, Furukawa M, Takahashi K, Gonzalez FJ, Yamazoe Y. Mechanism of 7,12-dimethylbenz[a]anthracene-induced immunotoxicity: role of metabolic activation at the target organ Jpn. J Pharmacol. 2001; 86(3):302-309.

Baxi BR, Patel PS, Adhvaryu SG, Dayal PK. Usefulness of serum glycoconjugates in precancerous and cancerous diseases of the oral cavity. Cancer Rep. 1991; 67(1):735-740.

Olafvan T. The importance of drug-transporting P-glycoprotein’s in toxicology. ToxicolLett. 2001; 120(1-3):31-41.

Laferte S and Loh LC. Characterization of a family of structurally related glycoproteins expressing beta-1-6-branchedasparagine-linked oligosaccharides in human colon carcinoma cells. Biochem J. 1992; 283(1):193-201.

Sharmila U, Subramanya U, Prabhu KS. Serum Glycoconjugates and ceruloplasmin in cancer of uterine cervix. Ind J ClinBiochem. 2002; 17(1):20-24.

Vinoth Kumar V, Manoharan S, Planimuthu D, Rajasekaran D, Srinivasan R, Afaqwani S. Geraniol protects cell surface glycoconjugatesduring7,12 dimethylbenz(a)anthracene induced oral carcinogenesis. J Cell Tissue Res. 2011; 11(2):759-764.

Rao SR and RavishankarGA.Vanillaflavour: production by conventional and biotechnological routes. J Sci Food Agric. 2000; 80(3):289-304.

Cerrutti P, Alzamora SM, Vidales SL. Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J Food Sci. 1997; 62(3):608-610.

Aruoma OI. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radic. 1999; 30(6):419-427.

Keshava C, Keshava N, Ong T, Nath J. Protective effect of vanillin on radiation-induced micronuclei and chromosomal aberrations in V79 cells. Mutat Res.1998; 397(2):149-159.

Imanishi H, Sasaki YF, Matsumoto K, Watanabe M, Ohta T, Shirasu Y, Tutikawa K. Suppression of 6-TG-resistant mutations in V79 cells and recessive spot formations in mice by vanillin. Mutat Res. 1990; 243(15):151-158.

Abraham DJ, Mehanna AS, Wireko FC, Whitney J, Thomas RP, Orringer EP.Vanillin, a potential agent for the treatment of sickle cell anemia. Blood 1991; 77(4):1334-1341.

Kumar SS, Priyadarsini KI, Sainis KB. Inhibition of peroxynitrite-mediated reactions by vanillin. J Agric Food Chem. 2004; 52(1):139-145.

Ferguson LR. Antimutagens as cancer chemopreventive agents in the diet. Mutat Res. 1994; 307(1):395-410.

Akagi K, Hirose M, Hoshiya T, Mizoguchi Y, Ito N, Shirai T. Modulating effects of elagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model. Cancer Lett. 1995; 94(1):113-121.

Sasaki YF, Ohta T, Imanishi H, Watanabe M, Matsumoto K, Kato T, Shirasu Y. Suppressing effects of vanillin, cinnamaldehyde and anisaldehyde on chromosome aberrations induced by X-rays in mice. Mutat Res. 1990; 243(15):299-302.

Niebes P. Determination of enzymes and degradation products of glycosaminoglycans.ClinChimActa. 1972; 42(2):399-408.

Wagner WD. More sensitive assay discriminating glactosamine and glucosamine in mixtures. Anal Biochem. 1979; 94(2):394-397.

Warren L. The thiobarbituric acid assay of sialic acid. J Biol Chem. 1959; 234(8):1971-1975.

Dische L andShettles LB. Specific colour reactions of methyl pentose’s and spectrophotometric micro method for their determination. J BiolChem. 1948; 175(2):595–598.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-275.

Varelas X, Bouchie MP, Kukuruzinska MA. Protein Nglycosylationin oral cancer: dysregulated cellular networks among DPAGT1, E- cadherin adhesion and canonical Wnt signaling. Glycobiol. 2014; 24(7):579-591.

Wu J, Xie X, Liu Y, He J, Benitez R, Buckanovich RJ, Lubman DM. Identification and confirmation of differentially expressed fucosylated glycoprotein’s in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res. 2012;11(9):4541-4552.

Kirwan A, Utratna M, O'Dwyer ME, Joshi L, Kilcoyne M. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. Biomed Res Int. 2015; (15):490 -531.

Meany DL and Chan DW. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics. 2011 Jun 3;8 (1):1559-1575.

Macbeth RA and Bekesi JG. Plasma glycoproteins of malignant disease. Arch Surg. 1964; 88:635-637.

Hakomori S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res. 1985; 45(6):2405-2414.

Manoharan, S, Padmanabhan M, Kolanjiappan K, Ramachandran CCR, Suresh K. Analysis of glycoconjugates patients with oral squamous cell carcinoma. ClinicaChimicaActa. 2004; 339(1):91-96.

Suresh K, Manoharan S, Vijayaanand MA, Sugunadevi GG, Rajkamal G, Vrinda V. Modifying effects of [6]-Paradol on glycoconjugates levels in 7,12-dimethylbenz (a) anthracene induced hamster buccal pouch carcinogenesis”. J Cell Tissue Res. 2009; (3):973-1028.

Kannagi R. Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconjugates .1997; (14):577-584.

Rao VR, Krishnamoorthy L, KumarasamyS, Ramaswamy G. Circulating levels in serum of total sialic acid, lipid-associated sialicacidand fucose in precancerous lesion and cancer of the oral cavity. Cancer Detect Prev. 1998; (22):237-240.

Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008; 14(8):351-360.

Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J. 2018; 35(2):139-160.

Patel PS, Raval GN, Rawal RM, Patel MM, Balar DB, Patel DD. Importance of glycoproteins in human cancer. Indian J Biochem Biophys.1997; 34(1-2):226-233.

Zhang Z, Wuhrer M, Host S. Serum sialylationchanges in cancer. Glycoconj J. 2018; 35(2):139-160.

Downloads

Published

2021-04-01

How to Cite

Naseer, I., Elanchezhiyan, C., Manoharan, S., Hassan, T., & Neelakandan, M. (2021). Vanillin Modulates the Status of Glycoconjugates in Favouur of Tumor Suppression in 7,12dimethylbenz[a]anthracene Induced Oral Carcinoma in Golden Syrian Hamster: doi.org/10.26538/tjnpr/v5i4.4. Tropical Journal of Natural Product Research (TJNPR), 5(4), 617–620. Retrieved from https://www.tjnpr.org/index.php/home/article/view/665

Most read articles by the same author(s)