Myrtenal Modulates the Immunoexpression of Cell Proliferative, Angiogenic and Invasive Markers in DMBA-Induced Hamster Oral Carcinogenesis

doi.org/10.26538/tjnpr/v4i9.10

Authors

  • Rajamanickam Buddhan Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
  • Shanmugam Manoharan Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
  • Chakkaravarthy Elanchezhiyan Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, India
  • Radhakrishnan Muralinaidu Department of Oral Pathology, Rajah Muthiah Dental College, Annamalai University, Annamalainagar, Tamil Nadu, India
  • Mohan Karthik Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India

Keywords:

invasion, angiogenesis, cell proliferation, hamsters, DMBA, Cancer

Abstract

Abnormal cell proliferation, invasion, metastasis and angiogenesis are the most prominent features of malignant tumours. The present study evaluated the modulating effect of myrtenal on the immunoexpression pattern of cell proliferative (PCNA and cyclin D1), angiogenic (VEGF) and invasive (MMP-2 and MMP-9) markers in 7,12-dimethylbenz(a)anthracene (DMBA)- induced experimental oral carcinogenesis in golden Syrian hamsters using immunohistochemical assay. Topical application (painting) of 0.5% DMBA (six hamsters), a site specific carcinogen, three times a week for 14 weeks resulted in the formation of tumors in the buccal pouches of
golden Syrian hamsters , which was confirmed by histopathological studies. Buccal mucosa excised from the hamsters treated with DMBA alone (tumour-bearing hamsters) showed abnormal immunoexpression pattern of cell proliferative, angiogenic and invasive markers. Myrtenal administration (230 mg/kg b.w) orally to DMBA treated hamsters significantly downregulated the expression of the above said molecular markers in the chemopreventive phase and considerably decreased the expression pattern in the chemotherapeutic phase. The findings from this study, thus support the anti-cell proliferative, anti-angiogenic, and antiinvasive potential of myrtenal in DMBA-induced hamster buccal pouch carcinoma.

References

Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168(4):670–691.

Otto T and Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017;17(2):93–115.

Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016;94(12):1313-1326.

Dong P, Zhang C, Parker B-T, You L, Mathey-Prevot B. Cyclin D/CDK4/6 activity controls G1 length in mammalian cells. PLoS ONE 2018;13(1):e0185637.

John RR, Ravindran C, Malathi N, Aruna RM. Evaluation of the role played by cyclin D1 as a diagnostic and prognostic marker in the progression of oral carcinogenesis. J Maxillofac Oral Surg. 2018;17(3):389–395.

Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L,Navarro-Triviño FJ, González-Moles MA. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis. 2017;23(7):897-912.

Manimaran A, Buddhan R, Manoharan S. Emodindownregulates cell proliferation markers during DMBA induced oral carcinogenesis in golden syrian hamsters. Afr J TradComplAltern Med. 2017;14(2):83-91.

Noorlag R, Boeve K, Witjes MJ, Koole R, Peeters TL, Schuuring E, Willems SM, van Es RJ. Amplification and protein over expression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer. Head Neck 2017;39(2):326-333.

Gupta N, Gupta R, Acharya AK, Patthi B, Goud V, Reddy S, Garg A, Singla A. Changing Trends in oral cancer - a global scenario. Nepal J Epidemiol. 2016; 6(4):613-619.

Khan H, Gupta S, Husain N, Misra S, Mps N, Jamal N, Ghatak A. Correlation between expressions of Cyclin-D1, EGFR and p53 with chemoradiation response in patients of locally advanced oral squamous cell carcinoma. BBA Clin. 2014;3:11-17.

Slade D. Maneuvers on PCNA Rings during DNA replication and repair. Genes (Basel). 2018;9(8):416.

Zińczuk J, Zaręba K, Guzińska-Ustymowicz K, Kędra B, Kemona A, Pryczynicz A. Expression of chosen cell cycle and proliferation markers in pancreatic intraepithelial neoplasia. PrzGastroenterol. 2018;13(2):118-126.

Lv Q, Zhang J, Yi Y, Huang Y, Wang Y, Wang Y, Zhang W. Proliferating cell nuclear antigen has an association with prognosis and risks factors of cancer patients: a systematic review. MolNeurobiol. 2016;53(9):6209-6217.

Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J MorpholEmbryol. 2018;59(2):455-467.

Mander KA and Finnie JW. Tumour angiogenesis, antiangiogenic therapy and chemotherapeutic resistance. Aust Vet J. 2018;96(10):371-378.

Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, LopezGonzalez JS. Contribution of angiogenesis to inflammation and cancer. Front Oncol. 2019;9:1399.

Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol. 2018;32(4):318-323.

La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, Qu X, Adams RH, Baldwin HS, Savant S, Augustin HG. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018; 128(2):834-845.

MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai CH, Tang CH. Implications of angiogenesis involvement in arthritis. Int J Mol Sci. 2018;19(7):2012.

Chen Z, Li B, Dong Q, Qian C, Cheng J, Wang Y. Repetitive transient ischemia-induced cardiac angiogenesis is mediated by camkii activation. Cell PhysiolBiochem. 2018;47(3):914- 924.

Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol. 2019;176(1):93-109.

Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-1264.

Srivastava C, Bhattacharya AB, Das R, Maheshwari P. Tumor angiogenesis in oral squamous cell carcinoma- An immunohistochemical study with VEGF. MSCR 2019;07(03):1448-1456.

Quintero-Fabián S, Arreola R, Becerril-Villanueva E, TorresRomero JC, Arana-Argáez V, Lara-Riegos J, RamírezCamacho MA, Alvarez-Sánchez ME. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370.

Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177-183.

Farhadi S and Mohamadi M. Significance of MMPs expression on oscc clinical outcome. SL Dent Oral DisordTher. 2017; 1(1):111.

Massano J, Regateiro FS, Januario G, Ferreira A. Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol Oral RadiolEndod. 2006;102:67–76.

Dragomanova S, Tancheva L, Georgieva M, Klisurov R. Analgesic and anti-inflammatory activity of monoterpenoidmyrtenal in rodents. J IMAB. 2019;25(1):2406-2413.

Lokeshkumar B, Sathishkumar V, Nandakumar N, Rengarajan T, Madankumar A, Balasubramanian MP. Antioxidative effect of myrtenal in prevention and treatment of colon cancer induced by 1, 2-dimethyl hydrazine (DMH) in experimental animals. BiomolTher (Seoul). 2015;23(5):471-478.

Rathinam A, Pari L. Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharm Biol. 2016;54(11):2521-2527.

HariBabu L, Perumal S, Balasubramanian MP. Myrtenal attenuates diethylnitrosamine-induced hepatocellular carcinoma in rats by stabilizing intrinsic antioxidants and modulating apoptotic and anti-apoptotic cascades. Cell Oncol (Dordr) 2012;35(4):269-283.

Kaufmann D, Dogra AK, Wink M. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J Pharm Pharmacol. 2011; 63(10):1368–1371.

Buddhan R, Manoharan S, Muralinaidu R, Karthik M, Neelakandan M. Chemopreventive potential of myrtenal in 7,12-dimethylbenz(a) anthracene induced experimental oral carcinogenesis in golden syrian hamsters. J ClinDiag Res. 2020; 14(4):XC01-XC06.

Buddhan R, Manoharan S, Muralinaidu R. Myrtenal averts apoptotic evasion of cancer cells in 7,12- dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Int J Res Pharm Sci. 2020; 11(3):2838-2847.

Wu H, Ploeger JM, Kamarajugadda S, Mashek DG, Mashek MT, Manivel JC, Shekels LL, Lapiro JL, Albrecht JH. Evidence for a novel regulatory interaction involving cyclin D1, lipid droplets, lipolysis, and cell cycle progression in hepatocytes. HepatolCommun. 2019;3(3):406-422.

Inoue K and Fry EA. Aberrant expression of cyclin D1 in cancer. Sign Transduct Insights. 2015;4:1-13.

Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019;17(4):e3000228.

Sawair F, Hassona Y, Irwin C, Stephenson M, Hamilton P, Maxwell P, Gordon D, Leonard A, Napier S. p53, Cyclin D1, p21 (WAF1) and Ki-67 (MIB1) expression at invasive tumour fronts of oral squamous cell carcinomas and development of local recurrence. Asian Pac J Cancer Prev. 2016;17(3):1243-1249.

Gatoo MA, Dar AM. Cyclin D1 expression of different histological grades in oral squamous cell carcinoma patients from Northern India. Arch Oncol. 2018; 24(1):6-9.

Zhao Y, Yu D, Li H, Nie P, Zhu Y, Liu S, Zhu M, Fang B. Cyclin D1 over expression is associated with poor clinicopathological outcome and survival in oral squamous cell carcinoma in Asian populations: insights from a metaanalysis. PLoS ONE 2014;9(3):e93210.

Sasahira T and Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018;19(8):2413.

Suresh TN, Hemalatha A, Harendrakumar ML, AzeemMohiyuddin SM. Evaluation of histomorphological and immunohistochemical parameters as biomarkers of cervical lymph node metastasis in squamous cell carcinoma of oral cavity: A retrospective study. J Oral Maxillofac Pathol 2015;19:18-24.

Ramos-García P, González-Moles MÁ, González-Ruiz L,Ayén Á, Ruiz-Ávila I, Bravo M, Gil-Montoya JA. Clinicopathological significance of tumor cyclin D1 expression in oral cancer. Arch Oral Biol. 2019;99:177-182.

Troiano G, Caponio VCA, Botti G, Aquino G, Losito NS, Pedicillo MC, Zhurakivska K, Arena C, Ciavarella D, Mastrangelo F, Lo Russo L, Lo Muzio L, Pannone G. Immunohistochemical analysis revealed a correlation between musashi-2 and cyclin-d1 expression in patients with oral

squamous cells carcinoma. Int J Mol Sci. 2019;21(1):pii:E121.

Schönenberger F, Deutzmann A, Ferrando-May E, Merhof D. Discrimination of cell cycle phases in PCNA-immunolabeled cells. BMC Bioinformatics. 2015;16:180.

Lu EM, Ratnayake J, Rich AM. Assessment of proliferating cell nuclear antigen (PCNA) expression at the invading front of oral squamous cell carcinoma. BMC Oral Health 2019; 19(1):233.

Poosarla C, Ramesh M, Ramesh K, Gudiseva S, Bala S, Sundar M. Proliferating cell nuclear antigen in premalignancy and oral squamous cell carcinoma. J ClinDiagn Res. 2015; 9(6):ZC39-ZC41.

Gupta P, Shaw K, Satpathy PK, Mohanty R. Histomorphological correlation of oropharyngolaryngeal dysplasia and squamous cell carcinoma with special reference to p53 and PCNA expression. Int J Health Sci Res. 2018; 8(12):13-17.

Abdulkadir SN, Ali NR, Alchalabi NJ. Pathological study of oral squamous cell carcinoma by application of P53 and PCNA (immunohistochemical approach). Int J CurrMicrobiol App Sci. 2016; 5(4):91-100.

Lončarević SA, Brajković DO, Gardašević MF, LončarevićOLj, Lađević NG, Nešić DM, Stamenković DM, Likić-Lađević IS, Lađević NN, Rančić NK. Expression of PCNA, CD-31 and HER-2 in Serbian patients with oral squamous cell carcinoma. Arch Biol Sci. 2019;71(4):703-710.

Baghban AA, Taghavi N, Shahla M. Combined analysis of vascular endothelial growth factor expression with cyclooxygenase-2 and mast cell density in oral squamous cell carcinoma. Pathobiol. 2017;84(2):80-86.

Kargahi N, Torabinia N, Razavi SM, Tahririan D, Kamani H, Nazari M. Immunohistochemically detection of angiogenesis in oral pre-cancerous lesions compared with oral invasive carcinomas. Asian Pac J Cancer Prev. 2018; 19(7):1805-1808.

Pożarowska D and Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol. 2016;41(3):311-316.

Srivastava C, Bhattacharya AB, Das R, Maheshwari P. Tumor angiogenesis in oral squamous cell carcinoma- An immunohistochemical study with VEGF. MSCR 2019;07(03):1448-1456.

Mercurio AM. VEGF/Neuropilin signaling in cancer stem cells. Int J Mol Sci. 2019;20(3):490.

Atla B, Prabhakula S, Kumar SS, Boni LS. Matrix metalloproteinase-9 (MMP-9) as prospective histopathological and molecular biomarker for oral squamous cell carcinoma. Int J Res Med Sci. 2018;6:2801-2807.

Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17(6):1147-1155.

Zheng WY, Zhang DT, Yang SY, Li H. Elevated matrix metalloproteinase-9 expression correlates with advanced stages of oral cancer and is linked to poor clinical outcomes. J Craniomaxillofac Surg. 2015;73(12):2334-2342.

Wiegand S, Dünne AA, Müller HH, Mandic R, Barth P, Davis RK, Werner JA. Metaanalysis of the significance of matrix metalloproteinases for lymph node disease in patients with head and neck squamous cell carcinoma. Cancer. 2005;104(1):94-100.

Miguel AFP, Mello FW, Melo G, Rivero ERC. Association between immuno histochemical expression of matrix metalloproteinases and metastasis in oral squamous cell carcinoma: Systematic review and meta-analysis. Head Neck 2020;42(3):569-584.

Pietruszewska W, Bojanowska-Poźniak K, Kobos J. Matrix metalloproteinases MMP1, MMP2, MMP9 and their tissue inhibitors TIMP1, TIMP2, TIMP3 in head and neck cancer: an immunohistochemical study. Otolaryngol Pol. 2016;70(3):32-43.

Ciucă FI, Mărăşescu PC, Matei M, Florescu AM, Mărgăritescu C, Demetrian AD, Drăgan I, Dumitrescu CI. The prognostic value of CXCR4, MMP-2 and MMP-9 in tongue squamous carcinoma. Rom J MorpholEmbryol. 2019;60(1):59-68.

Ren Q, Kou N, Shi C, Bai H, Wang Q, Li D. MMP-9 expression levels and the pathological differentiation of oral squamous cell carcinoma ( OSCC ): a meta-analysis. Int J ClinExp Med. 2019;12(3):2107-2113.

Ikebe T, Shinohara M, Takeuchi H, Beppu M, Kurahara S, Nakamura S and Shirasuna K. Gelatinolytic activity of matrix metalloproteinase in tumor tissues correlates with the invasiveness of oral cancer. ClinExpMetast. 1999;17:315-323.

Champatyray S, Das SR, Bhuyan R, Debata P and Sahu MC: Immunohistochemical expression of MMP9 in different grades of oral squamous cell carcinoma: Our experience at tertiary care centre. Int J Pharm Sci Res. 2019;10(4):1880- 1885.

Henriques AC, de Matos FR, Galvao HC, FreitasRde A. Immunohistochemical expression of MMP-9 and VEGF in squamous cell carcinoma of the tongue. J Oral Sci. 2012; 54(1):105–111.

Monteiro LS, Delgado ML, Ricardo S, do Amaral B, Salazar F, Pacheco JJ, Lopes CA, Bousbaa H, Warnakulasuryia S. Prognostic significance of CD44v6, p63, podoplanin and MMP-9 in oral squamous cell carcinomas. Oral Dis. 2016;22(4): 303-312.

Phulari RGS, Vasavada D, Shah A, RajendrasinhRathodR ,Anubhooti Patel5 , Sweety Patel. Immunoexpression of MMP-9 in metastasis of oral squamous cell carcinoma. Oral MaxillofacPathol. J 2019;10(2):68–71.

Downloads

Published

2020-09-01

How to Cite

Buddhan, R., Manoharan, S., Elanchezhiyan, C., Muralinaidu, R., & Karthik, M. (2020). Myrtenal Modulates the Immunoexpression of Cell Proliferative, Angiogenic and Invasive Markers in DMBA-Induced Hamster Oral Carcinogenesis: doi.org/10.26538/tjnpr/v4i9.10. Tropical Journal of Natural Product Research (TJNPR), 4(9), 550–557. Retrieved from https://www.tjnpr.org/index.php/home/article/view/1130

Most read articles by the same author(s)