In vitro Evaluation of the Antioxidant and Anticancer Activities of Chlorogenic Acid on Human Colon Cancer (HT-29) Cells

Authors

  • Manoharan Pethanasamy Department of Chemistry and Biosciences, SASTRA Deemed to be University, Srinivasa Ramanujan Centre, Kumbakonam - 612 001, Tamilnadu, India
  • Melapalayam R. Suchitra Department of Chemistry and Biosciences, SASTRA Deemed to be University, Srinivasa Ramanujan Centre, Kumbakonam - 612 001, Tamilnadu, India
  • Shanmugam M. Sivasankaran Department of Chemistry and Biosciences, SASTRA Deemed to be University, Srinivasa Ramanujan Centre, Kumbakonam - 612 001, Tamilnadu, India
  • Saravanan Surya Department of Chemistry and Biosciences, SASTRA Deemed to be University, Srinivasa Ramanujan Centre, Kumbakonam - 612 001, Tamilnadu, India
  • Chakkaravarthy Elanchezhiyan Department of Zoology, Annamalai University, Annamalainagar - 608002, Tamilnadu, India.
  • Jawahar Monsi Thara Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar-608002, Tamilnadu, India

DOI:

https://doi.org/10.26538/tjnpr/v8i3.16

Keywords:

Apoptosis, Cell proliferation, Free radicals, Chlorogenic acid

Abstract

ROS have a dual role in the body. At normal levels, they are essential for cell signalling and differentiation. However, high ROS levels can cause oxidative damage to DNA, lipids, and proteins, leading to diseases like cancer. The body's antioxidant defences counteract ROS damage, but imbalances can result in oxidative stress linked to various diseases, including cancer and diabetes. The study aims to evaluate chlorogenic acid's in vitro antioxidant and antiproliferative effects on HT-29 human colon cancer cells. The free radical scavenging ability of chlorogenic acid was determined using 2,2-diphenyl-1-picryl hydrazyl(DPPH) radical, ABTS radical, nitric
oxide radical, and hydrogen peroxide scavenging assays. The antiproliferative effect of chlorogenic acid was assessed using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, mitochondrial membrane potential measurement, ROS generation, and by measuring apoptotic induction potential. The present study observed a considerable free radical scavenging potential of chlorogenic acid compared to the reference drug ascorbic acid. Similarly, chlorogenic acid exhibited a potent antiproliferative effect against HT-29 cancer cells, which could be attributed to its apoptotic induction potential and its ability to generate excessive ROS to
reduce the cell viability of HT-29 cells. The findings shed light on the potential therapeutic benefits of chlorogenic acid in combating colon cancer, offering insights for further exploration and potential development of novel anticancer treatments.

References

Lizama N, Jongenelis M, Slevin T. Awareness of cancer risk factors and protective factors among Australian adults. Health Promot J Austr. 2020; 31(1):77-83.

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71(1):7-33.

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017; 66(4):683-691

Lavingia V, Gore AA. Time for colorectal cancer screening in India!. Indian J Cancer. 2021; 58(3):315-316.

Baidoun F, Elshiwy K, Elkeraie Y, Merjaneh Z, Khoudari G, Sarmini MT, Gad M, Al-Husseini M, Saad A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr Drug Targets. 2021; 22(9):998-1009.

Klaunig JE. Oxidative stress and cancer. Curr Pharm Des. 2018; 24(40):4771-4778.

Sivasankaran SM, Abdulla SHS, Elanchezhiyan C, Pethanasamy M, Surya S, Theerthu A, Krishnan H. Reactive oxygen species scavenging and anti-proliferative potential of veratric acid: An in vitro approach. Trop J Nat Prod Res. 2023; 7(4):2837-2843

Alkadi H. A Review on free radicals and antioxidants. Infect Disord Drug Targets. 2020; 20(1):16-26.

Shaban N, Elanchezhiyan C, Manoharan S. Modulating effect of vincamine on the oxidative stress markers and lipid profile in high fat diet and streptozotocin-induced type 2 diabetic rats. Trop J Nat Prod Res.2022; 6(4):546- 551.

Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle IO, Oseghale IO, Imieje VO, Erharuyi O, Falodun A. Antioxidant and hypoglycaemic potentials of the leaf extracts of Stachytarphytajamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019; 3(5):170-174.

Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013; 61(1):54-62.

Brandi J, Di Carlo C, Manfredi M, Federici F, Bazaj A, Rizzi E, Cornaglia G, Manna L, Marengo E, Cecconi D. Investigating the proteomic profile of HT-29 colon cancer cells after Lactobacillus kefiri SGL 13 Exposure using the SWATH method. J Am Soc Mass Spectrom. 2019;

(9):1690-1699.

Nwafor EO, Lu P, Zhang Y, Liu R, Peng H, Xing B, Liu Y, Li Z, Zhang K, Zhang Y, Liu Z. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol. 2022; 15(1):101294

Feng Y, Sun C, Yuan Y, Zhu Y, Wan J, Firempong CK, Omari-Siaw E, Xu Y, Pu Z, Yu J, Xu X. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm.2016; 501(1-2):342-349

Ye HY, Li ZY, Zheng Y, Chen Y, Zhou ZH, Jin J. The attenuation of chlorogenic acid on oxidative stress for renal injury in streptozotocin-induced diabetic nephropathy rats. Arch Pharm Res. 2016; 39(7):989-997.

Dkhil MA, Abdel Moneim AE, Bauomy AA, Khalil M, AlShaebi EM, Al-Quraishy S. Chlorogenic acid prevents hepatotoxicity in arsenic-treated mice: role of oxidative stress and apoptosis. Mol Biol Rep. 2020 ; 47(2):1161-1171.

Gao W, Wang C, Yu L, Sheng T, Wu Z, Wang X, Zhang D, Lin Y, Gong Y. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK Pathway. Biomed Res Int. 2019 18; 2019:6769789.

Yang JS, Liu CW, Ma YS, Weng SW, Tang NY, Wu SH, Ji BC, Ma CY, Ko YC, Funayama S, Kuo CL. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo. 2012; 26(6):971-978.

Jiang Y, Satoh K, Watanabe S, Kusama K, Sakagami H. Inhibition of chlorogenic acid-induced cytotoxicity by CoCl2. Anticancer Res. 2001; 21(5):3349-3353.

Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M,Okamoto K, Mori H. Inhibition of 4-nitroquinoline-1-oxideinduced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis. 1993; 14(7):1321-1325.

Matsunaga K, Katayama M, Sakata K, Kuno T, Yoshida K, Yamada Y, Hirose Y, Yoshimi N, Mori H. Inhibitory effects of chlorogenic acid on azoxymethane-induced colon carcinogenesis in male F344 rats. Asian Pac J Cancer Prev. 2002; 3(2):163-166.

Shimizu M, Yoshimi N, Yamada Y, Matsunaga K, Kawabata K, Hara A, Moriwaki H, Mori H. Suppressive effects of chlorogenic acid on N-methyl-N-nitrosourea-induced glandular stomach carcinogenesis in male F344 rats. J Toxicol Sci. 1999; 24(5):433-9.

Tanaka T, Nishikawa A, Shima H, Sugie S, Shinoda T, Yoshimi N, Iwata H, Mori H. Inhibitory effects of chlorogenic acid, reserpine, polyprenoic acid (E-5166), or coffee on hepatocarcinogenesis in rats and hamsters. Basic Life Sci. 1990; 52:429-40.

Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-Otetradecanoylphorbol-13-acetate. Cancer Res. 1988; 48(21):5941-5946.

Liu YJ, Zhou CY, Qiu CH, Lu XM, Wang YT. Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells. Mol Med Rep. 2013 ;8(4):1106-1110

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181(4617):1199-200.

Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. The antioxidant properties of the aflavins and their gallate esters--radical scavengers or metal chelators?. FEBS Lett. 1996; 392(1):40-44.

Garratt CJ. Effect of iodination on the biological activity of insulin. Nature. 1964; 201:1324-1325.

Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK.Antioxidant activities of flavidin in different in vitro model systems. Bioorg Med Chem. 2004; 12(19):5141-5146

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2):55-63.

Rastogi RP, Singh SP, Häder DP, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun. 2010; 397(3):603-607.

Scaduto RC Jr, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999; 76(1 Pt 1):469-477

Baskić D, Popović S, Ristić P, Arsenijević NN. Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridine orange/ethidium bromide. Cell Biol Int. 2006; 30(11):924-932

Zain MH, Al-Ismaeel WNH, Al-Jaber GT. Cytotoxic and antioxidant activities of Clary sage (Salvia sclarea L.) essential oil against AMJ-13 cancer cell line. Trop J Nat Prod Res. 2022; 6(5):732-735.

Zamani M, MoradiDelfani A, Jabbari M. Scavengingperformance and antioxidant activity of γ-alumina nanoparticles towards DPPH free

radical: Spectroscopic and DFT-D studies. Spectrochim Acta A Mol Biomol Spectrosc. 2018; 201:288-299.

Ullah F, Iqbal N, Ayaz M, Sadiq A, Ullah I, Ahmad S, Imran M. DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodiumbotrys aerial parts. Pak J Pharm Sci. 2017; 30(3):761-766.

Haenen GR, Bast A. Nitric oxide radical scavenging of flavonoids. Methods Enzymol. 1999; 301:490-503.

Sueishi Y, Hori M. Nitric oxide scavenging rates of solubilized resveratrol and flavonoids. Nitric Oxide. 2013; 29:25-29.

Costa D, Gomes A, Reis S, Lima JL, Fernandes E. Hydrogen peroxide scavenging activity by non-steroidal antiinflammatory drugs. Life Sci. 2005; 76(24):2841-2848.

Durai P, Manoharan S, Suresh K, Elanchezhiyan C, Durgarao V, Hemavardhini R. Vincamine reduces cell viability of KB and Hep-2 cancer cells through its apoptotic potential.Trop J Nat Prod Res. 2022; 6(9):1420-1425.

Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front Cell Dev Biol. 2021; 9:628157.

Downloads

Published

2024-03-30

How to Cite

Pethanasamy, M., Suchitra, M. R., Sivasankaran, S. M., Surya, S., Elanchezhiyan, C., & Thara, J. M. (2024). In vitro Evaluation of the Antioxidant and Anticancer Activities of Chlorogenic Acid on Human Colon Cancer (HT-29) Cells. Tropical Journal of Natural Product Research (TJNPR), 8(3), 6582–6588. https://doi.org/10.26538/tjnpr/v8i3.16