Phytochemical Analysis and Evaluation of the Antioxidant Activity of Cedrus atlantica (Endl.) G. Manetti ex Carrière Stem Extracts
Main Article Content
Abstract
Cedrus atlantica is a Mediterranean medicinal plant used to treat a number of ailments including cancer and urinary tract infections. This study is aimed to analyze the phytochemical constituents and evaluates the antioxidant activity of Cedrus atlantica stem extracts. Powdered stem of Cedrus atlantica underwent successive extraction with cyclohexane, ethyl acetate, and ethanol using Soxhlet apparatus to obtain cyclohexane (F1), ethyl acetate (F2), and ethanol (F3) extracts. The marc was macerated with water to obtain the aqueous extract (F4). Phytochemical screening was performed following standard procedures. Total phenolic, flavonoid, flavonol, and tannin contents were also determined. The extracts were subjected to gas chromatography mass spectrometry analysis. The antioxidant activity was evaluated using the DPPH, ABTS, FRAP and TAC assays. Phytochemical screening revealed the presence of flavonoids, anthocyanins, tannins, quinines, coumarins, terpenoids, anthraquinones, sterols, and saponins in the plant. F3 showed the highest content of total polyphenols (237.23±1.61 mgGAE/g extract) and tannins (189.4±0.76 mgCE/g extract), while F2 exhibited the highest content of total flavonoids (81.53±1.13 mgQE/g extract) and flavonols (33.4±0.16 mgQE/g extract). F3 also demonstrated the most potent antioxidant efficacy in the DPPH (IC50 = 19.40±0.01 μg/mL), ABTS (IC50 = 21.24±0.002 μg/mL), FRAP (EC50 = 94.36±2.51 μg/mL), and TAC (780.97±4.86 µg AAE/g extract) assays. GC-MS analysis identified acids, phenolic compounds, terpenes, and steroids in the extracts, suggesting their contribution to the antioxidant activity exhibited by the plant extracts. These observations underscore the therapeutic potential of the plant and justify its traditional medicinal application across various diseases.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ait Sidi Brahim M, Markouk M, Larhsini M. Moroccan Medicinal Plants as Antiinfective and Antioxidant Agents. In New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads. 2019; p. 91‑142. https://doi.org/10.1016/B978-0-12-814619-4.00005-7. DOI: https://doi.org/10.1016/B978-0-12-814619-4.00005-7
Zaher A, Boufellous M, Jaber H, El Hartiti H, Barrahi M, Ouhssine M, Bourkhiss B. Ethnobotanical Study of Medicinal Plants Used in the Province of Sidi Slimane (Morocco). JBM. 2018; 06(09):25‑35. https://doi.org/10.4236/jbm.2018.69003. DOI: https://doi.org/10.4236/jbm.2018.69003
Najem M, Daoudi A, Bouiamrine EH, Ibijbijen J, Nassiri L. Biodiversity of poisonous medicinal plants solicited in the traditional phytotherapy of the central Middle Atlas -Morocco-. Ethnobot. Res. Appl. 2019; 18:1‑22. http://dx.doi.org/10.32859/era.18.19.1-22. DOI: https://doi.org/10.32859/era.18.19.1-22
Salhi N, El-guourrami O, Rouas L, Moussaid S, Moutawalli A, Benkhouili F, Ameggouz M, Alshahrani M, Awadh A, Bouyahya A, my el abbes F, Cherrah Y. Evaluation of the Wound Healing Potential of Cynara humilis Extracts in the Treatment of Skin Burns. eCAM. 2023; 2023:1‑12. https://doi.org/10.1155/2023/5855948. DOI: https://doi.org/10.1155/2023/5855948
Mahraz A M, Elhachmia C, Zakia R, Taleb M. Medicinal Plants of Moulay Yaâcoub Province in Morocco: An Ethnobotanical and Biodiversity Survey. TJNPR. 2023; 7(8). http://www.doi.org/10.26538/tjnpr/v7i8.3. DOI: https://doi.org/10.26538/tjnpr/v7i8.3
Hamilton AC. Medicinal plants, conservation and livelihoods. Biodivers. Conserv. 2004; 13(8):1477‑517. DOI: https://doi.org/10.1023/B:BIOC.0000021333.23413.42
Serbouti S, Abbas Y, Soussi M, Alaoui I, Squalli W, Achiban H. Morphological Responses of Cedrus atlantica, Pinus halepensis, and Tetraclinis articulata in Different Pedoclimatic Conditions. TJNPR. 2022; 6(12): 1919–1924. http://www.doi.org/10.26538/tjnpr/v6i12.3.
Bellakhdar J. Jamal Bellakhdar - La pharmacopée marocaine traditionnelle - Jamal Bellakhdar. Éditions Le Fennec [Online]. 1997 [cited 2022 Jan 31]. Available from: https://lefennec.com/livre/la-pharmacopee-marocaine-traditionnelle-jamal-bellakhdar/.
Bouayyadi L, El Hafian M, Zidane L. Étude floristique et ethnobotanique de la flore médicinale dans la région du Gharb, Maroc. J App Bioscience. 2015; 93(1):8770. https://doi.org/10.4314/jab.v93i1.10. DOI: https://doi.org/10.4314/jab.v93i1.10
Schnaubelt K. MEDICAL AROMATHERAPY: Healing with Essential Oils. Berkeley, CA: Frog [Online]. 1999 [cited 2022 Feb 1]. Available from: https://www.biblio.com/book/medical-aromatherapy-healing-essential-oils-schnaubelt/d/1276415526.
Lawless J. The encyclopeadia of essential oils: a complete guide to the use of aromatics in aromatherapy, herbalism, health & well-being. Shaftsbury, Dorset: Element; 1992.
Lawrence, B. M. Progress in Essential Oils. Perfumer & Flavorist [Online]. 2012 [cited 2022 Feb 1]. Available from: https://www.perfumerflavorist.com/fragrance/ingredients/article/21859574/progress-in-essential-oils.
FischerRizzi S. The Complete Aromatherapy Handbook: Essential Oils for Radiant Health par Susanne Fischer-Rizzi: Used: Acceptable Paperback (1990) | Lady Lisa’s Bookshop [Online]. 1990 [cited 2022 Feb 1]. Available from: https://www.abebooks.fr/9780806982229/Complete-Aromatherapy-Handbook-Essential-Oils-0806982225/plp.
Paun G, Zrira S, Boutakiout A, Ungureanu O, Simion D, Chelaru C, et al. CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITY OF ESSENTIAL OILS FROM MOROCCAN AROMATIC HERBS. Rev. Roum. Chim. 2013;9.
Dakir M, El Hanbali F, Mellouki F, Mar Herrador M, Barrero AF, Benharref A, et al. Chemical and antibacterial studies of essential oils of scales and seeds of Cedrus atlantica Endl. J Nat Prod Plant Resour. 2014; 4:15.
Murbach Teles Andrade BF, Nunes Barbosa L, da Silva Probst I, Fernandes Júnior A. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014; 26(1):34‑40. https://doi.org/10.1080/10412905.2013.860409. DOI: https://doi.org/10.1080/10412905.2013.860409
Rhafouri R, Satrani B, Zair T, Ghanmi M, Bou-Idra M, Omari ME, Bentayeb A. Chemical Composition Of The Cedrus Atlantica (Endl.) Manetti Ex Carrière Seeds Essential Oil In Function Of Their Germination Stages. IJRAMR. 2015;6. DOI: https://doi.org/10.13171/mjc.3.5.2014.10.14.23.44
Nam AM, Bighelli A, Ghanmi M, Satrani B, Casanova J, Tomi F. Deodarone Isomers in Cedrus atlantica Essential Oils and Tar Oils. NPC. 2015;10(11). https://doi.org/10.1177/1934578X1501001123. DOI: https://doi.org/10.1177/1934578X1501001123
Martins DF, Emer AA, Batisti AP, Donatello N, Carlesso MG, Mazzardo-Martins L, Venzke D, Micke G A, Pizzolatti M G, Piovezan A P, dos Santos A R S. Inhalation of Cedrus atlantica essential oil alleviates pain behavior through activation of descending pain modulation pathways in a mouse model of postoperative pain. J. Ethnopharmacol. 2015; 175:30‑8. https://doi.org/10.1016/j.jep.2015.08.048. DOI: https://doi.org/10.1016/j.jep.2015.08.048
Zrira S, Ghanmi M. Chemical Composition and Antibacterial Activity of the Essential of Cedrus atlantica (Cedarwood oil).
J. Essent. Oil-Bear. Plants. 2016; 19:1267‑72. https://doi.org/10.1080/0972060X.2015.1137499. DOI: https://doi.org/10.1080/0972060X.2015.1137499
Fidah A, Salhi N, Mohamed R, Kabouchi B, Ziani M, Aberchane M, Famiri A. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. MADERAS-CIENC TECNOL. 2016;18. http://dx.doi.org/10.4067/S0718-221X2016005000049. DOI: https://doi.org/10.4067/S0718-221X2016005000049
Pazinato R, Volpato A, Baldissera MD, Santos RCV, Baretta D, Vaucher RA, Giongo J L, Boligon A A, Stefani L M, Da Silva A S. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J Adv Res. 2016;7(6):1029‑34. https://doi.org/10.1016/j.jare.2016.05.003. DOI: https://doi.org/10.1016/j.jare.2016.05.003
Benouaklil F, Hamaidi-Chergui F, Hamaidi Ms, Saidi F. Chemical Composition and Antimicrobial Properties of Algerian Cedrus Atlantica M. Essential Oils | agrobiologia [Online]. 2017 [cited 2022 Feb 1]. Available from: https://agrobiologia.net/online/chemical-composition-and-antimicrobial-properties-of-algerian-cedrus-atlanticam-essential-oils/.
El-miziani I, Sara H, Essahli M, Lhaloui S, Lamiri A. Lead corrosion inhibition by cedrus atlantica as a green inhibitor in 0.1M Na2CO3 solution. Int. J. Adv. Chem. 2017; 5:1. https://doi.org/10.14419/ijac.v5i1.7115. DOI: https://doi.org/10.14419/ijac.v5i1.7115
ez zoubi Y, el-akhal F, Farah A, Taghzouti K, El Ouali Lalami A. Chemical composition and larvicidal activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) against Culex pipiens (Diptera: Culicidae). J. Appl. Pharm. Sci. 2017; 7:30‑4. https://doi.org/10.7324/JAPS.2017.70704. DOI: https://doi.org/10.7324/JAPS.2017.70704
Uehara A, Tommis B, Belhassen E, Satrani B, Ghanmi M, Baldovini N. Odor-active constituents of Cedrus atlantica wood essential oil. Phytochem. 2017; 144:208‑15. https://doi.org/10.1016/j.phytochem.2017.09.017. DOI: https://doi.org/10.1016/j.phytochem.2017.09.017
Emer AA, Donatello NN, Batisti AP, Oliveira Belmonte LA, Santos ARS, Martins DF. The role of the endocannabinoid system in the antihyperalgesic effect of Cedrus atlantica essential oil inhalation in a mouse model of postoperative pain. J Ethnopharmacol. 2018; 210:477‑84. https://doi.org/10.1016/j.jep.2017.09.011. DOI: https://doi.org/10.1016/j.jep.2017.09.011
Belloula N, Dridi S, Khattaf A. Investigation Into The Antibacterial Activity And Chemical Composition Of ‘Cedrus Atlantica’ Essential Oil. IND DRU. 2018; 55(06):51‑5. https://doi.org/10.53879/id.55.06.11292. DOI: https://doi.org/10.53879/id.55.06.11292
Uwineza MS, El Yousfi B, Lamiri A. Antifungal activities of essential oils of Mentha pulegium, Eugenia aromatica and Cedrus atlantica on Fusarium culmorum and Bipolaris sorokiniana in vitro. RMPP. 2018; 12: 19-32.
Ainane A, Benhima R, Khammour F, el Kouali M, Talbi M, Abba EH, Cherroud S, Tarik A. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today: Proc. 2019; P 474-485. https://doi.org/10.1016/j.matpr.2019.04.004. DOI: https://doi.org/10.1016/j.matpr.2019.04.004
Alves TJS, Murcia A, Wanumen AC, Wanderley-Teixeira V, Teixeira ÁAC, Ortiz A, Medina P. Composition and Toxicity of a Mixture of Essential Oils Against Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). J Econ Entomol. 2019; 112(1):164‑172. https://doi.org/10.1093/jee/toy275. DOI: https://doi.org/10.1093/jee/toy275
Oukhrib A, Zaki M, Ait El Had M, Karroumi J, Bouamama H, Benharref A, Urrutigoïty M. Synthesis of cyclopropane ring derivatives from natural β- himachalene and evaluation of their antimicrobial activity by bioautography. RHAZES GAC. 2019; 6:61‑70.
Skanderi I, Chouitah O. Chemical Characterization and Antioxidant Activity of Cedrus atlantica Manetti Tar (Atlas Cedar Tar). FUJC. 2020; 8(2):244-255. https://doi.org/10.17721/fujcV8I2P244-255. DOI: https://doi.org/10.17721/fujcV8I2P244-255
Bennouna F, Lachkar M, EL ABED S, Saad I. Cedrus atlantica essential oil: Antimicrobial activity and effect on the physicochemical properties of cedar wood Surface. Moroccan J. Biol. 2020; 16:35‑45.
Belkacem N, Khettal B, Hudaib M, Bustanji Y, Abu-Irmaileh B, Amrine CSM. Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. Eur. J. Integr. Med. 2021; 42:101292. https://doi.org/10.1016/j.eujim.2021.101292. DOI: https://doi.org/10.1016/j.eujim.2021.101292
Jaouadi I, Cherrad S, Bouyahya A, Koursaoui L, Satrani B, Ghanmi M, Chaouch A. Chemical variability and antioxidant activity of Cedrus atlantica Manetti essential oils isolated from wood tar and sawdust. Arab. J. Chem. 2021;14(12):103441. https://doi.org/10.1016/j.arabjc.2021.10344. DOI: https://doi.org/10.1016/j.arabjc.2021.103441
Thielmann J, Muranyi P, Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019; 5(6):e01860. https://doi.org/10.1016/j.heliyon.2019.e01860. DOI: https://doi.org/10.1016/j.heliyon.2019.e01860
Saab AM, Lampronti I, Borgatti M, Finotti A, Harb F, Safi S, Gambari R. In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat Prod Res. 2012; 26(23):2227‑31. https://doi.org/10.1080/14786419.2011.643885. DOI: https://doi.org/10.1080/14786419.2011.643885
Hung PH, Hsieh MC, Lee SC, Huang XF, Chang KF, Chen SY, Lee MS, Tsai NM. Effects of Cedrus atlantica extract on acute myeloid leukemia cell cycle distribution and apoptosis. Mol Biol Rep. 2020; 47(11):8935‑8947. https://doi.org/10.1007/s11033-020-05947-w. DOI: https://doi.org/10.1007/s11033-020-05947-w
Chang KF, Chang JT, Huang XF, Huang YC, Li CY, Weng JC, Hsiao CY, Hsu HJ, Tsai NM. Cedrus atlantica Extract Suppress Glioblastoma Growth through Promotion of Genotoxicity and Apoptosis: In Vitro and In Vivo Studies. Int J Med Sci. 2021;18(11):2417‑30. https://doi.org/10.7150/ijms.54468. DOI: https://doi.org/10.7150/ijms.54468
Maya BM, Abedini A, Gangloff SC, Kabouche A, Kabouche Z, Voutquenne-Nazabadioko L. A new δ-tocotrienolic acid derivative and other constituents from the cones of Cedrus atlantica and their in vitro antimicrobial activity. Phytochem. Lett. 2017; 20:252‑8. https://doi.org/10.1016/j.phytol.2017.05.009. DOI: https://doi.org/10.1016/j.phytol.2017.05.009
Orchard A, Van vuuren S, Viljoen A. Commercial Essential Oil Combinations against Topical Fungal Pathogens. Nat. Prod. Commun. 2019; 14:1934578X1901400. https://doi.org/10.1177/1934578X1901400139. DOI: https://doi.org/10.1177/1934578X1901400139
Tennyson S, Samraj DA, Jeyasundar D, Chalieu K. Larvicidal efficacy of plant oils against the dengue vector Aedes aegypti (L.) (Diptera: Culicidae). Middle East J. Sci. Res. 2013; 13:64‑8.
Naimi F, Bousta D, Balouiri M, Meskaoui A. Antioxidant and free radical-scavenging properties of seeds flavonoids extract of Cedrus atlantica Manetti, Linum usitatissimum L. and Ocimum basilicum L. species. J. Appl. Pharm. Sci. 2015; 5(08):95-99. https://doi.org/10.7324/JAPS.2015.50815. DOI: https://doi.org/10.7324/JAPS.2015.50815
El-miziani I, Sara H, Lhaloui S, Essahli M, Lamiri A. Study of Antioxidant Activity of Essential Oils Extracted from Moroccan Medicinal and Aromatic Plants. European j. med. plants. 2015; 10:1‑12. https://doi.org/10.9734/EJMP/2015/19955. DOI: https://doi.org/10.9734/EJMP/2015/19955
Fadel H, Benayache F, Samir B. Antioxidant properties of four Algerian medicinal and aromatic plants Juniperus oxycedrus L., Juniperus
phoenicea L., Marrubium vulgare L. and Cedrus atlantica (Manetti ex Endl). Sch. Res. J. 2016; 8:72‑9.
Hofmann T, Visiné Rajczi E, Balázs B, Dániel B, Levente A. Antioxidant Capacity and Tentative Identification of Polyphenolic Compounds of Cones of Selected Coniferous Species. Acta Silv. 2020; 16:79‑94. https://doi.org/10.37045/aslh-2020-0006. DOI: https://doi.org/10.37045/aslh-2020-0006
Rostagno MA, Prado JM. Natural Product Extraction: Principles and Applications. RSC; 2013. 1032 p. DOI: https://doi.org/10.1039/9781849737579
Deyab M, Elkatony T, Ward F. Qualitative and Quantitative Analysis of Phytochemical Studies on Brown Seaweed, Dictyota dichotoma. IJEDR. 2016; 4(2):5.
El-Houda N, Daira, Maazi MC, Chefrour A. Contribution à l’étude phytochimique d’une plante médicinale (Ammoides verticillata Desf. Briq.) de l’Est Algérien. Bull. Soc. R. Sci. Liege. 2016; 276‑90. https://doi.org/10.25518/0037-9565.6494. DOI: https://doi.org/10.25518/0037-9565.6494
Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. Sci. World J. 2017; 2017:5873648. https://doi.org/10.1155/2017/5873648. DOI: https://doi.org/10.1155/2017/5873648
Poh Hwa T, Cheah YK, J. IB, Radu S. Bioprotective properties of three Malaysia Phyllanthus species: an investigation of the antioxidant and antimicrobial activities. Int. Food Res. J. 2011; 18(3):887‑93.
Ordoñez AAL, Gomez JD, Vattuone MA, lsla MI. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006; 97(3):452‑8. https://doi.org/10.1016/j.foodchem.2005.05.024. DOI: https://doi.org/10.1016/j.foodchem.2005.05.024
Yermakov AI, Arasimov VV, Yarosh NP. Methods of biochemical analysis of plants. Agropromizdat, Leningrad. 1987; 122–142.
Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 1985; 33(2):213‑7. https://doi.org/10.1021/jf00062a013. DOI: https://doi.org/10.1021/jf00062a013
Şahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, Agar G, Özer H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control. 2004; 15(7):549‑57. https://doi.org/10.1016/j.foodcont.2003.08.009. DOI: https://doi.org/10.1016/j.foodcont.2003.08.009
Drioua S, Azalmad H, El-Guourrami O, Ameggouz M, Benkhouili FZ, Assouguem A, Kara M, Ullah R, Ali E A, Ercisli S, Fidan H, Benzeid H, Doukkali A. Phytochemical screening and antioxidant activity of Vitex agnus-castus L. Open Chem. 2024; 22(1). https://doi.org/10.1515/chem-2023-0190. DOI: https://doi.org/10.1515/chem-2023-0190
Pukalskas A, van Beek, T.A., Venskutonis, R.P., Linssen, J.P.H., van Veldhuizen, A., de Groot, Æ. Identification of Radical Scavengers in Sweet Grass (Hierochloe odorata). J. Agric. Food Chem. 2002; 50(10):2914‑9. https://doi.org/10.1021/jf011016r. DOI: https://doi.org/10.1021/jf011016r
Drioua S, El-Guourrami O, Assouguem A, Ameggouz M, Kara M, Ullah R , Bari A, Zahidi A, Skender A, Benzeid A, Doukkali A.. Phytochemical study, antioxidant activity, and dermoprotective activity of Chenopodium ambrosioides (L.). Open Chem. 2024; 22(1). https://doi.org/10.1515/chem-2023-0194 DOI: https://doi.org/10.1515/chem-2023-0194
Oyaizu M. Studies on products of browning reaction--antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi = Japanese journal of nutrition [Onligne]. 1986 [cited 2022 Nov 22]; Available from: https://scholar.google.com/scholar_lookup?title=Studies+on+products+of+browning+reaction--antioxidative+activities+of+products+of+browning+reaction+prepared+from+glucosamine&author=Oyaizu%2C+M.&publication_year=1986.
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269(2):337‑41. https://doi.org/10.1006/abio.1999.4019. DOI: https://doi.org/10.1006/abio.1999.4019
El-guourrami O, Drioua S, Ameggouz M, Salhi N, Sayah K, Zengin G, Zahidi A, Doukkali A, BENZEID H. Antioxidant activity, analgesic activity, and phytochemical analysis of Ammi majus (L.) extracts. IJSM. 2023; 10:23‑37. https://doi.org/10.21448/ijsm.1139246. DOI: https://doi.org/10.21448/ijsm.1139246
Hadzri HM, Yunus MAC, Zhari S, Rithwan F. The Effects of Solvents and Extraction Methods on the Antioxidant Activity of P. niruri. Jurnal Teknologi [Online]. 2014 [cited 2022 Nov 26];68(5). Available from: https://journals.utm.my/jurnalteknologi/article/view/3030. DOI: https://doi.org/10.11113/jt.v68.3030
Metrouh-Amir H, Duarte CMM, Maiza F. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind Crops Prod. 2015; 67:249‑56. https://doi.org/10.1016/j.indcrop.2015.01.049. DOI: https://doi.org/10.1016/j.indcrop.2015.01.049
Kamarudin NA, Latip MM and J. Effects of Solvents and Extraction Methods on Herbal Plants Phyllanthus niruri, Orthosiphon stamineus and Labisia pumila. INDJST. 2016;9(21):1‑5. https://doi.org/10.17485/ijst/2016/v9i21/95235. DOI: https://doi.org/10.17485/ijst/2016/v9i21/95235
Pinelo M, Rubilar M, Sineiro J, Núñez MJ. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004; 85(2):267‑73. https://doi.org/10.1016/j.foodchem.2003.06.020. DOI: https://doi.org/10.1016/j.foodchem.2003.06.020
Hayet E, Maha M, Samia A, Ali MM, Souhir B, Abderaouf K, Mighri Z, Mahjoub A. Antibacterial, antioxidant and cytotoxic activities of extracts of Conyza canadensis (L.) Cronquist growing in Tunisia. Med Chem Res. 2009; 18(6):447‑54. https://doi.org/10.1007/s00044-008-9141-0. DOI: https://doi.org/10.1007/s00044-008-9141-0
Todorovic V, Redovnikovic IR, Todorovic Z, Jankovic G, Dodevska M, Sobajic S. Polyphenols, methylxanthines, and antioxidant capacity of chocolates produced in Serbia. J Food Compost Anal. 2015; 41:137‑43. https://doi.org/10.1016/j.jfca.2015.01.018. DOI: https://doi.org/10.1016/j.jfca.2015.01.018
Bérubé-Gagnon J. Isolation et identification de composés antibiotiques des écorces de Picea mariana / Université du Québec à Chicoutimi [Online]. 2006 [cited 2023 Jan 12]. Available from: http://constellation.uqac.ca/449/. DOI: https://doi.org/10.1522/24963281
Söderberg TA, Gref R, Holm S, Elmros T, Hallmans G. Antibacterial Activity of Rosin and Resin Acids in Vitro. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1990; 24(3):199‑205. https://doi.org/10.3109/02844319009041279. DOI: https://doi.org/10.3109/02844319009041279
Savluchinske Feio S, Gigante B, Roseiro JC, Marcelo-Curto MJ. Antimicrobial activity of diterpene resin acid derivatives. J Microbiol Methods. 1999; 35(3):201‑6. https://doi.org/10.1016/S0167-7012(98)00117-1. DOI: https://doi.org/10.1016/S0167-7012(98)00117-1
Gigante B, Santos C, Silva AM, Curto MJM, Nascimento MSJ, Pinto E, Pedro M, Cerqueira F, Pinto M. M, Duarte M P, Laires A, Rueff J, Gonçalves J, Pegado M I, Valdeira M L. Catechols from abietic acid synthesis and evaluation as bioactive compounds. Bioorg Med Chem. 2003; 11(8):1631‑8. https://doi.org/10.1016/S0968-0896(03)00063-4. DOI: https://doi.org/10.1016/S0968-0896(03)00063-4
Elliger CA, Zinkel DF, Chan BG, Waiss AC. Diterpene acids as larval growth inhibitors. Experientia. 1976;32(11):1364‑6. https://doi.org/10.1007/BF01937376. DOI: https://doi.org/10.1007/BF01937376
Dzeha T, Jaspars M, Tabudravu J. Clionasterol, a Triterpenoid from the Kenyan Marine Green Macroalga Halimeda macroloba. West Ind Oc J Mar Sci. 2004; 2(2):157‑61. DOI: https://doi.org/10.4314/wiojms.v2i2.28436
Khan ZM Halleys, Hossain Md Faruquee, Md Munan Shaik. Phytochemistry and Pharmacological Potential of Terminalia arjuna L. J. Med. Plant Res. 2013; 3(10):70-77. doi:10.5376/mpr.2013.03.0010. DOI: https://doi.org/10.5376/mpr.2013.03.0010
Serrano G, Fortea JM, Millan F, Botella R, Latasa JM. Contact allergy to resorcinol in acne medications: report of three cases. J Am Acad Dermatol. 1992; 26(3):502‑4. https://doi.org/10.1016/S0190-9622(08)80588-9. DOI: https://doi.org/10.1016/S0190-9622(08)80588-9


