Structure-Based Identification and Dynamic Profiling of Mitragyna speciosa Metabolites Targeting HPV E6 and EBNA1 in Cervical Cancer
Main Article Content
Abstract
Cervical cancer remains the fourth most commonly diagnosed malignancy and a leading cause of cancer-related mortality among women worldwide. Persistent infection with high-risk human papillomaviruses (HPVs), particularly types 16 and 18, is recognized as the primary etiological factor. Moreover, accumulating evidence suggests that co-infection with Epstein–Barr virus (EBV) may exacerbate cervical cancer progression, likely through the synergistic disruption of host cellular control mechanisms. The viral oncoproteins HPV E6 and Epstein–Barr nuclear antigen 1 (EBNA1) play pivotal roles in carcinogenesis by inactivating tumor suppressor pathways and maintaining viral genomes within host cells. Consequently, these proteins represent attractive molecular targets for the development of antiviral therapeutics aimed at virus-driven malignancies. In this study, a structure-based virtual screening approach was employed to evaluate 50 phytometabolites derived from Mitragyna speciosa against three key viral targets: HPV16 E6 (PDB ID: 6SJV) and two crystal structures of EBNA1 (PDB IDs; 6VH6 and 6NPP), respectively. Molecular docking using AutoDock Vina via AutoDock Tools facilitated the identification of the top five ligands with the most favorable binding affinities. These were further subjected to detailed interaction analysis, in silico pharmacokinetic assessment using SwissADME, and oral toxicity prediction via the ProTox-II platform. Among the shortlisted compounds, β-Stigmasterol and oleanolic acid emerged as the most promising candidates based on their superior binding energies, favorable ADME profiles, and acceptable predicted safety margins. Collectively, these findings support the therapeutic potential of selected Mitragyna speciosa metabolites as dual-target inhibitors of EBV and HPV oncoproteins, offering a valuable framework for future antiviral drug development.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Blanco R, Carrillo-Beltrán D, Osorio JC, Calaf GM, Aguayo F. Role of Epstein-Barr virus and human papillomavirus coinfection in cervical cancer: epidemiology, mechanisms and perspectives. Pathogens. 2020; 9(3):1-17.
2.Shi Y, Peng SL, Yang LF, Chen X, Tao YG, Cao. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. Chinese Journal of Cancer. 2016; 35(16):1-9.
3.Gomez K, Schiavoni G, Nam Y, Reynier J-B, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. medRxiv Prepr. Serv. Heal. Sci. 2023;1-44.
4.Kombe AJK, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, Jin T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Frontiers in Public Health. 2021; 8:1-19.
5.Jakovljevic A, Andric M. Human cytomegalovirus and epstein-barr virus in etiopathogenesis of apical periodontitis: A systematic review. Journal of Endodontics. 2014; 40(1):6-10.
6.Grabarek, BO, Ossowki P, Czarniecka J, Ozog M, Prucnal J, Dziuba I, Ostenda A, Dziobek K, Boron D, Peszek W, Kras P, Januszyk S, Dabala M, Kasela T, Oplawski M. Detection and Genotyping of Human Papillomavirus (HPV16/18), Epstein–Barr Virus (EBV), and Human Cytomegalovirus (HCMV) in Endometrial Endometroid and Ovarian Cancers. Pathogens. 2023; 12(397):1-14.
7.Vranic S, Cyprian FS, Akhtar S, Al Moustafa AE. The role of Epstein-Barr virus in cervical cancer: A brief update. Frontiers in Oncology. 2018; 8(113):1-8.
8.Yim, EK, Park JS. The Role of HPV E6 and E7 Oncoproteins in HPV-associated Cervical Carcinogenesis. Cancer Res. Treat. 2005; 37(6):319-324.
9.Gutiérrez-Hoya A, Soto-Cruz I. Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells. 2020; 9(2297):1-22.
10.DasGupta T, Nweze EI, Yue H, Wang L, Jin J, Ghosh SK, Kawsar HI, Zender C, Androphy EJ, Weinberg A, McCromick TS, Jin G. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53. Oncotarget. 2016; 7(19):27430-27444.
11.Wilson JB, Manet E, Gruffat H, Busson P, Blondel M, Fahraeus R. EBNA1: Oncogenic activity, immune evasion and biochemical functions provide targets for novel therapeutic strategies against epstein-barr virus-associated cancers. Cancers. 2018; 10(109):1-30.
12.Boudreault S, Armero VES, Scott MS, Perreault JP, Bisaillon M. The Epstein-Barr virus EBNA1 protein modulates the alternative splicing of cellular genes. Virol. J. 2019; 16(29):1-14.
13.Zafar A, Khan MJ, Abu J, Naeem A. Revolutionizing cancer care strategies: immunotherapy, gene therapy, and molecular targeted therapy. Molecular Biology Reports. 2024; 51(219):1-14.
14.Jin H, Liao S, Yao F, Li J, Xu Z, Zhao K, Xu X, Sun S. Insight into the Crosstalk between Photodynamic Therapy and Immunotherapy in Breast Cancer. Cancers. 2023; 15(1532):1-24.
15.Tafrihani AS, Hanif N, Yoga IMBK, Iramasari I, Fakih TM, Novitasari D, Hasibuan PAZ, Satria D, Huda F, Muchtaridi M, Hermawan A. A computational study of cardiac glycosides from Vernonia amygdalina as PI3K inhibitors for targeting HER2 positive breast cancer. J. Comput. Aided. Mol. Des. 2025; 39(43):1-6.
16.Chaachouay N, Zidane L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates. 2024; 3(1):184-207.
17.Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temmi V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, & Struppner H . Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances. 2015; 33:1582-1614.
18.Akbar NH, Suarantika F, Fakih TM, Haniffadli A, Muslimawati K, Putra AMP. Screening, docking, and molecular dynamics analysis of Mitragyna speciosa (Korth.) compounds for targeting HER2 in breast cancer. Curr. Res. Struct. Biol. 2025; 10:1-13.
19.Ghazalli MN, Sah MSM, Mat M, Awang K, Jaafar MA, Mirad R, Zaini AZ, Nordin ARM, Rusli NM, Mohamad SS, Syahman A. Leaf anatomy and micromorphology characteristics of ketum [Mitragyna speciosa (Korth.) Havil.] (Rubiaceae). Trop. Life Sci. Res. 2021; 32(1):1-12.
20.Brose J, Lau KH, Dang TTT, Hamilton JP, Martins LDV, Hamberger B, Hamberger B, Jiang J, O'Connor SE, Buell CR. The Mitragyna speciosa (Kratom) Genome: A resource for data-mining potent pharmaceuticals that impact human health. G3 Genes, Genomes, Genet. 2021; 11(4):1-9.
21.Priatna PA, Pratama RR, Widyowati R, Sukardiman. Molecular Docking Estrogen Receptor Alpha Antagonist and P53-MDM2 Inhibitor, ADMET Prediction of Alkaloid Compound from Mitragyna speciosa for Breast Cancer Therapy. Pharmacogn. J. 2022; 14(6s):912-916.
22.Arief I, Inderiyani I. Virtual Screening to Identification The Active Compounds from Kratom (Mitragyna speciosa) as Analgetics. Pharmacon J. Farm. Indones. 2023; 20(2):1-10.
23.Afendi F, Okada T, Yamazaki M, Morita AH, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Amin A, Darusman LK, Saito K, Kanaya S. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012; 53(2):1-10.
24.Brown T. ChemDraw. Sci. Teach. 2014; 81(2).
25.Eberhardt J, Santos-Martins D, Tillack AF, Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021; 61(6).
26.Morris GM, Goodsell DS, Pique ME, Lindstrom W, Huey R, Forli S, Hart WE, Halliday S, Belew R, Olson AJ. AutoDock Version 4.2. Citeseer. 2014; 15:30.
27.Messick TE, Tolvinski L, Zartler, ER, Moberg A, Frostell A, Smith GR, Reitz AB, Lieberman PM. Biophysical screens identify fragments that bind to the viral DNA-binding proteins EBNA1 and LANA. Molecules. 2020; 10(25):1-14.
28.Messick TE, Smith GR, Soldan SS, McDonnell ME, Deakyne JS, Malecka KA, Tolvinski L, Heuvel APJVD, Gu BW, Cassel JA, Tran DH, Wassermann BR, Zhang Y, Velvadapu V, Zartler ER, Busson P, Reitz AB, Lieberman PM. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Sci. Transl. Med. 2019; 11(482):1-27.
29.BIOVIA. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. Dassault Systèmes San Diego. 2017.
30.Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017; 7:1-13.
31.Banerjee P, Eckert, AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46:257-263.
32.Abraham M, Alekseenko A, Bergh C, Blau C, Briand E, Doijade M, Fleischmann S, Gapsys V, Garg G, Gorelov S, Gouaillardet G, Gray A, Irrgang ME, Jalalypour F, Jordan J, Junghans C, Kanduri P, Keller S, Kutzner C, Lemkul JA, Lundborg M, Merz P, Miletic V, Morozov D, Pall S, Schulz R, Shirts M, Shvetsov A, Soproni B, Spoel DVD, Turner P, Uphoff C, Villa A, Wingbermuhle S, Zhmurov A, Bauer P, Hess B, Lindahl E. GROMACS 2023.3 Manual (2023.3). Zenodo. Gromacs manual-2023.3. 2023.
33.Abraham M, Murtola T, Schulz R, Pall S, Smith J, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1:19-25.
34.Kumari R, Kumar R, Consortium OSDD, Lynn A. g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J. Chem. Inf. Model. 2014; 54(7):1-10.


