Network Pharmacology, Molecular Docking, and Machine Learning Prediction Reveal Andrographolide as a Mitochondrial Modulator in Cardiac Remodeling via TP53

Main Article Content

Muhamad Rizqy Fadhillah
Wawaimuli Arozal
Raymond Rubianto Tjandrawinata
Dewi Sukmawati
Aryo Tedjo
Deni Noviana
Abdul Mun’im
Muhammad Habiburrahman
Edwina Rugayah Monayo
Suci Widya Primadhani

Abstract

Mitochondrial dysfunction is a critical driver of cardiac remodeling under conditions of chronic stress, such as hypertension and heart failure. Andrographolide, a bioactive diterpenoid from Andrographis paniculata, has demonstrated antioxidative and anti-inflammatory effects; however, its role in mitochondrial quality control within the heart remains unclear. In this study, a network pharmacology approach was applied to explore the molecular targets of andrographolide related to mitochondrial dysfunction in cardiac remodeling. A total of 1763 mitochondrial-associated cardiac remodeling genes were retrieved from CardGenes and intersected with 539 andrographolide-related targets identified using PharmMapper, SwissTargetPrediction, and the comparative toxicogenomics database. Fifty-four overlapping genes were subjected to protein–protein interaction analysis using STRING and Cytoscape. The top-ranked hub gene was identified as TP53. Functional enrichment indicated key involvement in the PI3K-Akt, mitogen-activated protein kinases (MAPK), Forkhead box protein (FOXO), and AGE-RAGE pathways, linking andrographolide to the modulation of oxidative stress, metabolism, and cell survival. Gene ontology (GO) terms supported roles in kinase activity and membrane-associated signaling. Molecular docking showed strong binding affinities between andrographolide and TP53 regulators, particularly ataxia telangiectasia mutated (ATM) (−8.63 kcal/mol, Kd 6.34 × 10−7 M) and checkpoint 2 (CHK2) (−8.47 kcal/mol, Kd 4.68 × 10−7 M). Machine learning predictions indicated favorable LELP and moderate bioactivity for ataxia telangiectasia Rad3-related (ATR), CHK2, and Sirtuin 1 (SIRT1). These findings suggest that andrographolide exerts cardioprotective effects by modulating mitochondrial stress signaling and p53 regulatory networks. Further experimental validation is warranted to confirm its therapeutic potential in cardiac remodeling-related diseases.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Network Pharmacology, Molecular Docking, and Machine Learning Prediction Reveal Andrographolide as a Mitochondrial Modulator in Cardiac Remodeling via TP53. (2025). Tropical Journal of Natural Product Research , 9(12), 5910 – 5920. https://doi.org/10.26538/tjnpr/v9i12.2

References

1.Aidara ML, Walsh-Wilkinson É, Thibodeau SÈ, Labbé EA, Morin-Grandmont A, Gagnon G, Boudreau DK, Arsenault M, Bossé Y, Couët J. Cardiac reverse remodelling in a mouse model with many phenotypical features of heart failure with preserved ejection fraction: effects of modifying lifestyle. Am J Physiol Heart Circ Physiol. 2024; 326(4): H1017-H1036.

2.Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387-407.

3.Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ. Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med. 2022; 8: 822969.

4.Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther. 2024; 9(1): 124.

5.Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med. 2022; 9: 945142.

6.Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y, Jiang C, Chen G, Du D, Zheng W, Wang S, Gong M, Chen Y, Tian R, Li T. Targeting mitochondria-inflammation circuit by β-Hydroxybutyrate mitigates HFpEF. Circ Res. 2021; 128(2): 232-245.

7.Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases. Int J Mol Sci. 2022; 23(24): 16053.

8.Okolie NP, Falodun A, Davids O. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and it's potential for the inhibition of lipid peroxidation. Afr J Tradit Complement Altern Med. 2014 Apr 3;11(3): 221-227.

9.Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: an update. Front Pharmacol. 2022; 13: 920435.

10.Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pac J Trop Dis. 2014; 4(3): 213–222.

11.Otong ES, Makena W, Solomon AY, Bazabang SA, Aminu A, Henry R. Andrographis paniculata protects against brain hippocampus and cerebellum from mercury chloride induced damage by attenuating oxidative stress. Environ Anal Health Toxicol. 2022; 37(4): e2022027.

12.Das S, Gautam N, Dey SK, Maiti T, Roy S. Oxidative stress in the brain of nicotine-induced toxicity: protective role of Andrographis paniculata Nees and vitamin E. Appl Physiol Nutr Metab. 2009; 34(2): 124-135.

13.Wangsaatmadja AHR, Hendaryono TC, Baroroh U. Cytotoxicity assay of andrographolide isolated from sambiloto herb [Andrographis paniculata (burm.f.)] against lung cancer A-549 and prostate cancer DU-145 cell lines. Trop J Nat Prod Res. 2024; 8(5): 7201–7206.

14.Warditiani NK, Swastini DA, Arisanti CIS, Sari PMNA, Wirasuta IM. Pharmacological potential of Andrographis paniculata (Burm. f.) Nees in preventing atherosclerosis: A review. Trop J Nat Prod Res. 2021; 5(11): 1913–1918.

15.Arozal W, Wanandi SI, Louisa M, Wuyung PE, Noviana D, Eziefule OM, Dewi YR, Nabilah DA, Ikewuchi JC, Purnomo AS. Evaluating the acute toxicity and in vivo protective effect of standardized Andrographis paniculata extract against doxorubicin-induced cardiotoxicity in sprague-dawley rats. Trop J Nat Prod Res. 2024; 8(5): 7134–7141.

16.Fadhilah MR, Wibowo H, Bustami A, Sukmawat D, Tedjo A, Khatimah NG, Shimizu I, Arozal W. Investigation of anti-cardiac hypertrophy effects of Andrographis paniculata ethanolic extract by modulating proinflammation and oxidative stress via Nrf2/NF-kB/NLRP3 signalling pathway: in-silico and in-vitro approaches. J Appl Pharm Sci. 2025; 15(6): 277-294.

17.Tian Q, Liu J, Chen Q, Zhang M. Andrographolide contributes to the attenuation of cardiac hypertrophy by suppressing endoplasmic reticulum stress. Pharm Biol. 2023; 61(1): 61-68.

18.Safaeian L, Shafiee F, Haghighatnazar S. Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes. Mol Biol Rep. 2023; 50(1): 389-397.

19.Wu QQ, Ni J, Zhang N, Liao HH, Tang QZ, Deng W. Andrographolide protects against aortic banding-induced experimental cardiac hypertrophy by inhibiting MAPKs signalling. Front Pharmacol. 2017; 8: 808.

20.Xie S, Deng W, Chen J, Wu QQ, Li H, Wang J, Wei L, Liu C, Duan M, Cai Z, Xie Q, Hu T, Zeng X, Tang Q. Andrographolide protects against adverse cardiac remodelling after myocardial infarction through enhancing Nrf2 signalling pathway. Int J Biol Sci. 2020; 16(1): 12-26.

21.Yu P, Cao J, Sun H, Gong Y, Ying H, Zhou X, Wang Y, Qi C, Yang H, Lv Q, Zhang L, Sheng X. Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics. J Zhejiang Univ Sci B. 2023; 24(7): 632-649.

22.Huang Z, Wu Z, Zhang J, Wang K, Zhao Q, Chen M, Yan S, Guo Q, Ma Y, Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol Toxicol. 2023; 39(6): 3269-3285.

23.Dutta M, Ghosh AK, Jain G, Rangari V, Cattopadhyay A, Das T, Bhowmick D, Bandyopadhyay D. Andrographolide, one of the major components of Andrographis paniculata, protects against copper-ascorbate-induced oxidative damage to goat cardiac mitochondria in-vitro. Int J Pharm Sci Rev Res. 2014; 28(1): 237–247.

24.Fadhillah MR, Arozal W, Habiburrahman M, Arumugam S, Wibowo H, Primadhani SW, Tedjo A, Dwira S, Khatimah NG. Phytocompounds from Indonesian medicinal herbs as potential apelin receptor agonist for heart failure therapy: An in-silico approach. Int. J. Technol. 2025; 16(1): 332-347.

25.Dwira S, Tedjo A, Dharmawan MA, Erlina L, Fadillah F. Differentially expressed genes, and molecular docking and dynamic analysis revealing the potential of compounds in Zingiber officinale Roscoe as inhibitors of TP53-regulating Kinase (TP53RK) that influence the p53 signalling pathway Related to Apoptosis and Cell Cycle. Trop J Nat Prod Res. 2024; 8(8): 8007–8013.

26.Kurkcuoglu Z, Koukos PI, Citro N, Trellet ME, Rodrigues JPGLM, Moreira IS, Roel-Touris J, Melquiond ASJ, Geng C, Schaarschmidt J, Xue LC, Vangone A, Bonvin AMJJ. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2. J Comput Aided Mol Des. 2018; 32(1): 175-185.

27.Vangone A, Schaarschmidt J, Koukos P, Geng C, Citro N, Trellet ME, Xue LC, Bonvin AMJJ. Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server. Bioinformatics. 2019; 35(9):1585-1587.

28.Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014; 13(2): 105-121.

29.Shao D, Zhai P, Hu C, Mukai R, Sciarretta S, Del Re D, Sadoshima J. Lats2 promotes heart failure by stimulating p53-mediated apoptosis during pressure overload. Sci Rep. 2021; 11(1): 23469.

30.Chunhacha P, Pinkaew D, Sinthujaroen P, Bowles DE, Fujise K. Fortilin inhibits p53, halts cardiomyocyte apoptosis, and protects the heart against heart failure. Cell Death Discov. 2021; 7(1): 310.

31.Mak TW, Hauck L, Grothe D, Billia F. p53 regulates the cardiac transcriptome. Proc Natl Acad Sci U S A. 2017; 114(9): 2331-2336.

32.Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis. 2024; 15(5): 336.

33.Yang X, Yang R, Li X, Zheng X. Danshensu attenuates aldosterone-induced cardiomyocytes injury through interfering p53 pathway. Mol Med Rep. 2017; 16(4): 4994-5000.

34.Chen X, Lin H, Xiong W, Pan J, Huang S, Xu S, He S, Lei M, Chang ACY, Zhang H. p53-dependent mitochondrial compensation in heart failure with preserved ejection fraction. J Am Heart Assoc. 2022; 11(11): e024582.

35.Deng Y, Bi R, Guo H, Yang J, Du Y, Wang C, Wei W. Andrographolide enhances TRAIL-induced apoptosis via p53-Mediated death receptors up-regulation and suppression of the NF-кB pathway in bladder cancer cells. Int J Biol Sci. 2019; 15(3): 688-700.

36.Othman NS, Mohd Azman DK. Andrographolide induces G2/M cell cycle arrest and apoptosis in human glioblastoma DBTRG-05MG cell line via ERK1/2 /c-Myc/p53 signalling pathway. Molecules. 2022; 27(19): 6686.

37.Chen YY, Hsieh CY, Jayakumar T, Lin KH, Chou DS, Lu WJ, Hsu MJ, Sheu JR. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38-MAPK-p53 cascade. Sci Rep. 2014; 4: 5651.

38.Liu Z, Li Y, Ren Y, Chen J, Weng S, Zhou Z, Luo P, Chen Q, Xu H, Ba Y, Zuo A, Liu S, Zhang Y, Pan T, Han X. Efferocytosis: The janus-faced gatekeeper of aging and tumor fate. Aging Cell. 2025; 24(2): e14467.

39.Yang S, Evens AM, Prachand S, Singh AT, Bhalla S, David K, Gordon LI. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin Cancer Res. 2010; 16(19): 4755-4768.

40.Doi H, Matsui T, Dijkstra JM, Ogasawara A, Higashimoto Y, Imamura S, Ohye T, Takematsu H, Katsuda I, Akiyama H. Andrographolide, isolated from Andrographis paniculata, induces apoptosis in monocytic leukemia and multiple myeloma cells via augmentation of reactive oxygen species production. F1000Res. 2021;10: 542.

41.Chen JH, Hsiao G, Lee AR, Wu CC, Yen MH. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem Pharmacol. 2004; 67(7): 1337-1345.

42.Lee TY, Lee KC, Chang HH. Modulation of the cannabinoid receptors by andrographolide attenuates hepatic apoptosis following bile duct ligation in rats with fibrosis. Apoptosis. 2010; 15(8): 904-914.

43.Hsieh YL, Shibu MA, Lii CK, Viswanadha VP, Lin YL, Lai CH, Chen YF, Lin KH, Kuo WW, Huang CY. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice. J Ethnopharmacol. 2016; 192: 170-177.

44.Zhang J, Zhu D, Wang Y, Ju Y. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice. Cell Physiol Biochem. 2015; 37(4): 1619-1628.

45.Lin KH, Marthandam Asokan S, Kuo WW, Hsieh YL, Lii CK, Viswanadha V, Lin YL, Wang S, Yang C, Huang CY. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. Environ Toxicol. 2020; 35(6): 707-713.

46.Fadhillah MR, Arozal W, Wibowo H, Tedjo A, Primadhani SW, Khatimah NG, Amanda CR. TCTAP A-097 The in-silico analysis of andrographolide and its Derivatives to mitigate hypertensive-induced cardiac remodelling: insights from differential gene expression and computational modeling. J Am Coll Cardiol. 2025; 85(15 Suppl): S67.

47.Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, Hu W, Li T, She J, Yang Y. FOXOs in the impaired heart: new therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(2): 486-498.

48.Zhou Y, Zhao Q, Zhang Y, Di L, Xue F, Xu W, Gao W, Guo Y, He Y, Kou J, Qin Y, Xie X, Du L, Han G, Pang X. A new andrographolide derivative ADA targeting SIRT3-FOXO3a signalling mitigates cognitive impairment by activating mitophagy and inhibiting neuroinflammation in Apoe4 mice. Phytomedicine. 2024; 124: 155298.

49.Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med. 2022; 9: 966968.

50.Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med. 2023; 208: 846-858.

51.Hanifah S, Arozal W, Juniantito V. The Effect of oral andrographolide on cardiac biomarkers in doxorubicin-induced Rats. J. Med. Health. 2023; 5(2): 146–155.

52.Zhang D, Zhang B, Tan Y, Xiao J, Ba X, Li H, Yu Q, Zhou C. Protection of Andrographolide against Paraquat-Induced Acute Lung Injury via the AMPK/Nrf2 and PI3K/Akt pathways: role and molecular mechanism of andro in ALI. Iran J Pharm Sci. 2023; 19(2): 124-138.

53.Zhang Q, Hu LQ, Li HQ, Wu J, Bian NN, Yan G. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. Korean J Physiol Pharmacol. 2019; 23(2): 103-111.

54.Huang Y, Liu M, Liu C, Dong N, Chen L. The natural product andrographolide ameliorates calcific aortic valve disease by regulating the proliferation of valve interstitial cells via the MAPK-ERK pathway. Front Pharmacol. 2022; 13: 871748

55.Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. Geroscience. 2024; 46(5): 4729-4741.

56.Liu J, Ai Y, Niu X, Shang F, Li Z, Liu H, Li W, Ma W, Chen R, Wei T, Li X, Li X. Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem Biol Interact. 2020; 317: 108972.

57.He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. p53 acetylation exerts critical roles in pressure overload-induced coronary microvascular dysfunction and heart failure in mice. Arterioscler Thromb Vasc Biol. 2024; 44(4): 826-842.

58.Koser F, Hobbach AJ, Abdellatif M, Herbst V, Türk C, Reinecke H, Krüger M, Sedej S, Linke WA. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci. 2022; 309: 120998.

59.Zhang XF, Ding MJ, Cheng C, Zhang Y, Xiang SY, Lu J, Liu ZB. Andrographolide attenuates oxidative stress injury in cigarette smoke extract exposed macrophages through inhibiting SIRT1/ERK signalling. Int Immunopharmacol. 2020; 81: 106230.

60.Khatimah NG, Arozal W, Barinda AJ, Antarianto RD, Hardiany NS, Shimizu I, Fadhillah MR. Andrographis paniculata Ethanol Extract Alleviates High Glucose-induced Senescence of Human Umbilical Vein Endothelial Cells via the Regulation of mTOR and SIRT1 Pathways. Indones Biomed J. 2024; 16(4): 333–342.