VEGF and Macrophage Expression in Pulp Inflammation Following Administration of a Combination of Tricalcium Silicate Cement and Galam (Melaleuca cajuputi var. cumingiana) Leaf Extract: In Vivo and In Silico Studies

Main Article Content

Sherli Diana
Irene E. Rieuwpassa
Juni J. Nugroho
Rasmidar Samad
Risfah Yulianty
Nurhayaty Natsir
Nurlindah Hamrun
Muthi’ah N. Putri
Agung S. Wardhana
Maharani L. Apriasari
Tri Nurrahman
Juliyatin P. Utami

Abstract

The use of natural compounds with anti-inflammatory and regenerative effects for wound healing has been found beneficial. Galam (Melaleuca cajuputi var. cumingiana) is a typical Indonesian medicinal plant with anti-inflammatory activity. This study aimed to evaluate the combined effect of galam leaf extract and tricalcium silicate cement on vascular endothelial growth factor (VEGF) and macrophage expression in pulpitis rat model. Twenty-four male Wistar rats were divided into six groups: Groups 1 and 2 - received a combination of galam leaf extract and tricalcium silicate cement for 3 and 7 days, respectively; Groups 3 and 4 - received tricalcium silicate cement alone for 3 and 7 days, respectively; Groups 5 and 6 - received 40% propylene glycol for 3 and 7 days, respectively. After the treatment periods, macrophage and VEGF expressions were assessed by histological and immunohistochemical analyses. The binding interactions of phytoconstituents of galam leaf with VEGF protein was predicted through molecular docking simulations. Results showed a significant increase in VEGF expression and a reduction in pulp inflammation in the combination groups compared to the controls. Macrophage numbers increased on day 3, indicating immune activation, and decreased by the 7th day, suggesting inflammation resolution. The compound dammarane-3,12,25-triol present in galam leaf demonstrated strong binding affinity to VEGF in silico, suggesting potential angiogenic effect. These findings indicate that the combination of galam leaf extract and tricalcium silicate cement enhanced pulp healing by reducing inflammation, regulating macrophage activity, and increasing VEGF expression in pulpitis rat model.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

VEGF and Macrophage Expression in Pulp Inflammation Following Administration of a Combination of Tricalcium Silicate Cement and Galam (Melaleuca cajuputi var. cumingiana) Leaf Extract: In Vivo and In Silico Studies. (2025). Tropical Journal of Natural Product Research , 9(12), 6307 – 6312. https://doi.org/10.26538/tjnpr/v9i12.51

References

1.Kartinawanti AT and Asy’ari AK. Pulpal Diseases and Single-Visit Root Canal Treatment: Literature Review. J Ilmu Kedokt Gigi. 2021; 4(2):64-72.

2.Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, Kim C. Pulp-Dentin Tissue Healing Response: A Discussion of Current Biomedical Approaches. J Clin Med. 2020; 9(2):98-110.

3.Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell but Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol. 2022; 12:763243.

4.Kim ME and Lee JS. Advances in the Regulation of Inflammatory Mediators in Nitric Oxide Synthase: Implications for Disease Modulation and Therapeutic Approaches. Int J Mol Sci. 2025; 26(3):1204.

5.He P, Zheng L, Zhou X. IGFs in Dentin Formation and Regeneration: Progress and Remaining Challenges. Stem Cells Int. 2022; 2022:3737346.

6.Zaky SH, Shehabeldin M, Ray H, Sfeir C. The Role of Inflammation Modulation in Dental Pulp Regeneration. Eur Cells Mater. 2021; 41(8):184-193.

7.Zamzami ARA, Yasmina A, Isnaini. Toxicity Test of Methanolic Extracts of Galam Bark and Leaves Using BSLT Method. Homeostasis. 2021; 4(1):43-48.

8.Kusuma ARP, Praptiningsih RS, Nurhapsari A. Comparison of the Number of Macrophages in the Rat Reversible Pulpitis After Application of Biodentine and Siwak Extract. J Medali. 2022; 4(3):6-11.

9.Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I. Pulp Capping Materials Modulate the Balance Between Inflammation and Regeneration. Dent Mater. 2019; 35(1):24-35.

10.Ali MRW, Mustafa M, Bårdsen A, Bletsa A. Tricalcium Silicate Cements: Osteogenic and Angiogenic Responses of Human Bone Marrow Stem Cells. Eur J Oral Sci. 2019; 127(3):261-268.

11.Abuarqoub D, Aslam N, Zaza R, Jafar H, Zalloum S. The Immunomodulatory and Regenerative Effect of BiodentineTM on Human THP-1 Cells and Dental Pulp Stem Cells: In Vitro Study. Biomed Res Int. 2022; 22(9):1-12.

12.Isnaini, Biworo A, Khatimah H, Gufron KM, Puteri SR. Antibacterial and Antifungal Activity of Galam (Melaleuca cajuputi subsp. cumingiana (Turcz.) Barlow) Extract Against E. coli Bacteria and C. albicans Fungi. J Agromed Med Sci. 2021; 7(2):79-83.

13.Musta R, Nurliana L, Damhuri, Asranudin, Darlian L. Kinetics Study of Antibacterial Activity of Cajuput Oil (Melaleuca cajuputi) on Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Curr Appl Sci Technol. 2022; 22(3):1-10.

14.Diana S, Rieuwpassa IE, Nugroho JJ, Rahman FU, Wasiaturrahmah Y. Antibacterial Effectiveness Test of Galam Leaf Extract (Malaleuca cajuputi Subsp. cumingiana Barlow) Against Lactobacillus plantarum. AIP Conf Proc. 2025; 3312:020024.

15.Nugroho JJ, Diana S, Rieuwpassa IE, Puspaningtias IL, Wardhana AS. Combination of 50% Galam (Melaleuca cajuputi) Leaf Gel Extract and Tricalcium Silicate Cement as Direct Pulp Capping Materials: In Vivo Study. AIP Conf Proc. 2024; 31(27):42-49.

16.Erlangga BBS, Diana S, Saputera D, Aspriyanto D, Oktiani BW. Toxicity Test of Galam Leaf Extract (Melaleuca cajuputi subsp. cumingiana Barlow) on BHK-21 Fibroblast Cells. Dentin J Kedokt Gigi. 2023; 4(1):59-64.

17.Muntiha M. Teknik pembuatan preparat dengan pewarnaan hematoksilin dan balai penelitian veteriner: 156-163.

18.Nazar, I.B., Dewi, Y.A., & Permana, A.D. (2021). Vascular Endothelial Growth Factor Expression in Correlation with Stage Juvenile Nasopharyngeal Angiofibroma. Althea Medical Journal, 8(2). https://doi.org/10.15850/amj.v8n2.2170

19.Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Joestandari F. Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo. Eur J Dent. 2022; 13(9):63-72.

20.Fahmi M, Kharisma VD, Ansori AN, Ito M. Retrieval and Investigation of Data on SARS-CoV-2 and COVID-19 Using Bioinformatics Approach. In: Coronavirus Disease-COVID-19. 2021; 13(18):57-83.

21.Rahim F, Putra PP, Ismed F, Putra AE, Lucida H. Molecular Dynamics, Docking and Prediction of Absorption, Distribution, Metabolism and Excretion of Lycopene as Protein Inhibitor of Bcl2 and DNMT1. Trop J Nat Prod Res. 2023; 7(7):3439-3444.

22.Khongsai K, Srichamnong W, Yim W, Rattanadilok-Nad I. Phytochemical Analysis, Antioxidant and Antibacterial Activities of Ethanol and Aqueous Extracts of Melaleuca cajuputi Leaves. Trop J Nat Prod Res. 2024; 8(12):9517-9523.

23.Shen Z, Tsao H, LaRue S, Liu R, Kirkpatrick TC, Souza LC, Letra A, Silva RM. Vascular-Endothelial Growth Factor (VEGF) and/or Nerve Growth Factor (NGF) Enhance Dentinogenic/Odontogenic Marker Expression in SCAPs Under Inflammatory Challenge. J Endod. 2021; 47(6):924-931.

24.Khotimah H, Buyung HL, Istiana S, Katili I, Jatmiko W. Prediction of Antiinflammatory Effects of Rosmarinus officinalis L. in Osteoarthritis Through Inhibition in PGE2-R, COX-2, and IL-1b: An in Silico Study. Trop J Nat Prod Res. 2025; 9(2):504-511.

25.Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-Inflammatory Activities of Flavonoid Derivates. ADMET DMPK. 2023; 11(3):331-359.

26.Ismiyatin K, Mooduto L, Amani FPD. Effect of Epigallocatechin-3-Gallate (EGCG) on the Number of Lymphocyte Cells in Inflammation of Pulp with Mechanical Injury. Conserv Dent J. 2020; 10(1):9-13.

27.Apriasari ML, Pramitha SR, Puspitasari D, Ernawati DS. Anti-Inflammatory Effect of Musa acuminata Stem. Eur J Dent. 2020; 14(2):294-298.

28.Ramadhani NF, Nugraha AP, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Noor TNEBTA, Ridwan RD, Ernawati DS, Nugraha A. Anthocyanin, Tartaric Acid, Ascorbic Acid of Roselle Flower (Hibiscus sabdariffa L.) for Immunomodulatory Adjuvant Therapy in Oral Manifestation Coronavirus Disease-19: An Immunoinformatic Approach. J Pharm Pharmacogn Res. 2022; 10(3):418–428.

29.Sequeira DB, Diogo P, Gomes BPFA, Peça J, Santos JMM. Scaffolds for Dentin-Pulp Complex Regeneration. Medicina (Kaunas). 2023; 60(1):7.

30.Rahayu RP, Pribadi N, Widjiastuti I, Nugrahani NA. Combinations of Propolis and Ca(OH)2 in Dental Pulp Capping Treatment for the Stimulation of Reparative Dentin Formation in a Rat Model. F1000Res. 2020; 9:1–8.

31.Okolie NP, Falodun A, Oluseyi D. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and its potential for the inhibition of Lipid peroxidation. Afr J Tradit Complement Altern Med. 2014; 11(3):221-227. Doi: 10.4314/ajtcam. v11i3.31

32.Karobari MI, Adil AH, Assiry AA, Basheer SN, Noorani TY, Pawar AM. Herbal Medications in Endodontics and its Application - A Review of Literature. Materials. 2022; 15(9):1-14.

33.Rizqiawan A, Aprilia O, Pakpahan RG, Rodherika E, Setyowati A, Kei T. Application of Mangosteen Peel Extract (Garcinia mangostana Linn.) to TGF-1, PDGF-B, FGF-2 and VEGF-An Expression on Human Gingival Fibroblast Cell Culture (In Vitro Study). J Int Dent Med Res. 2021; 14(1):119-124.

34.Mantiniotou M, Athanasiadis V, Kalompatsios D, Bozinou E, Lalas SI. Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review. Compounds. 2025; 5(1):22-32.

35.Yang T, Li Z, Geng A, Liu P, Chen J. Synthesis and Biological Evaluation of (20S,24R)-Epoxy-Dammarane-3β,12β,25-Triol Derivatives as α-Glucosidase and PTP1B Inhibitors. Med Chem Res. 2022; 31(2):350-363.

36.Tao X, Liu K, Li W, Zhao S, Liu C, Dai Q. Saponin of Aralia taibaiensis Promotes Angiogenesis Through VEGF/VEGFR2 Signaling Pathway in Cerebral Ischemic Mice. J Ethnopharmacol. 2023; 3(17):116-127.

37.Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci. 2023; 24(5):46-57.

38.Pan D, Acevedo-Cintrón JA, Sayanagi J, Snyder-Warwick AK, Mackinnon SE, Wood MD. The CCL2/CCR2 Axis is Critical to Recruiting Macrophages into Acellular Nerve Allograft Bridging a Nerve Gap to Promote Angiogenesis and Regeneration. Exp Neurol. 2020; 331:113363.