Structural and Morphological Characterization of Bovine Pericardium–Nigella sativa Composite using XRD and SEM

Main Article Content

Ernie M. Setiawatie
Irma J. Savitri
Ferlina D. A. Y. P. Asano
Aulia G. Syahria
Basril Abbas
Yessy Warastuti
Tantin R. Dwidjartini

Abstract

This study investigated the characterization of a bovine pericardium membrane combined with 3% Nigella sativa extract as a potential biomaterial for the purpose of guided bone growth. Bovine pericardium has been widely used as a membrane in regenerative procedures due to its biocompatibility and favorable mechanical properties; however, its biological activity remains limited. The addition of Nigella sativa extract, known for its antioxidant and antimicrobial properties, was expected to enhance the membrane’s biofunctional performance. Characterization of the modified membrane was conducted using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). SEM analysis demonstrated a well-distributed porous morphology that supports cellular adhesion and proliferation, while XRD results revealed a semi-crystalline structure, demonstrating the composite membrane's structural stability. The incorporation of Nigella sativa extract enhanced the membrane's biological properties without compromising its mechanical integrity or surface structure. Overall, the findings suggest that the bovine pericardium membrane enriched with Nigella sativa extract exhibits enhanced bioactivity and maintains the physical characteristics necessary for use in guided bone regeneration as a barrier membrane. This material shows potential as a biocompatible and multifunctional scaffold for periodontal and other regenerative applications, warranting further in vivo investigation to evaluate its clinical effectiveness and long-term performance.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Structural and Morphological Characterization of Bovine Pericardium–Nigella sativa Composite using XRD and SEM. (2025). Tropical Journal of Natural Product Research , 9(12), 6235 – 6238. https://doi.org/10.26538/tjnpr/v9i12.42

References

1.Needleman I, Almond N, Leow N, Phillips J. Outcomes of periodontal therapy: Strengthening the relevance of research to patients. A co-created review. Periodontol 2000. 2023:1–15. doi:10.1111/prd.12483

2.Hamasni FM, El Hajj F. Treatment of a Localized Stage III Periodontitis in the Esthetic Zone with Guided Tissue Regeneration Technique on a Heavy Smoker Patient with 12 Year Follow-up: A Case Report. J Dent. 2024;25(2):183–9. doi:10.30476/dentjods.2024.100483.2224

3.Wahyuni PS, Rahardjo A, Novrinda H. Determinants of Periodontal Status in Adolescents in Indonesia: Analysis of 2018 Riskesdas Data. Cakradonya Dent J. 2024;16(1):7–16. doi:10.24815/cdj.v16i1.32134

4.Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genes (United States). 2022;60(8–9):1–16. doi:10.1002/dvg.23499

5.Baek SH, Yang BE, Park SY, On SW, Ahn KM, Byun SH. Efficacy of Cross-Linked Collagen Membranes for Bone Regeneration: In Vitro and Clinical Studies. Bioengineering. 2025;12(8):1–15. doi: 10.3390/bioengineering12080876

6.Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci. 2022;23(23): 14987. doi: 10.3390/ijms232314987

7.Ottenbacher N, Alkildani S, Korzinskas T, Pissarek J, Ulm C, Jung O, Sundag B, Bellmann O, Stojanovic S, Najman S, Zechner W, Barbeck M. Novel histomorphometrical approach to evaluate the integration pattern and functionality of barrier membranes. Dent J. 2021;9(11). doi:10.3390/dj9110127

8.Maduratna E, Sari DS, Rahayu RP, Masya RN, Adinar N. The Anti-Inflammatory Effect of Nigella sativa Toothpaste on Porphyromonas gingivalis Bacteria Through Decreased TNF-α, MMP-9, PGE-2 Expression in Wistar Rats. Eur J Dent. 2024;808–14. doi:10.1055/s-0043-1772700

9.Rahmani-Moghadam E, Talaei-Khozani T, Zarrin V, Vojdani Z. Thymoquinone loading into hydroxyapatite/alginate scaffolds accelerated the osteogenic differentiation of the mesenchymal stem cells. Biomed Eng Online [Internet]. 2021;20(1):1–20. doi:10.1186/s12938-021-00916-1

10.Tahmasebi E, Alam M, Yazdanian M, Tebyanian H, Yazdanian A, Seifalian A. Current biocompatible materials in oral regeneration: A comprehensive overview of composite materials. J Mater Res Technol. 2020;9(5):11731–55. doi:10.1016/j.jmrt.2020.08.042

11.Gao Y, Wang S, Shi B, Wang Y, Chen Y, Wang X . Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel). 2022;14(5). doi:10.3390/polym14050871

12.Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines. 2022;10(9). doi:10.3390/biomedicines10092307

13.Dasuki NDNM, Taib H, Berahim Z, Hassan A. Bovine Pericardium Membrane as a Barrier Material for Periodontal Tissue Regeneration: A Retrospective Study. J Heal Sci Med Res. 2025;43(5):1–8. doi:10.31584/jhsmr.20251179

14.Yamanaka JS, Oliveira AC, Bastos AR, Fernandes EM, Reis RL, Correlo VM. Collagen membrane from bovine pericardium for treatment of long bone defect. J Biomed Mater Res - Part B Appl Biomater. 2023;111(2):261–70. doi:10.1002/jbm.b.35148

15.El-Husseiny HM, Mady EA, Kaneda M, Shimada K, Nakazawa Y, Usui T. Comparison of Bovine- and Porcine-Derived Decellularized Biomaterials: Promising Platforms for Tissue Engineering Applications. Pharmaceutics. 2023;15(7):1–17. doi:10.3390/pharmaceutics15071906

16.Nogueira GM, Rodas ACD, Weska RF, Aimoli CG, Higa OZ, Maizato M, l. Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: In vitro calcification and cytotoxicity results. Mater Sci Eng C. 2010;30(4):575–82:1-8. doi:10.1016/j.msec.2010.02.011

17.Alberts A, Moldoveanu ET, Niculescu AG, Grumezescu AM. Nigella sativa : A Comprehensive Review of Its Therapeutic Potential, Pharmacological Properties, and Clinical Applications. Int. J. Mol. Sci. 2024; 25(24):1-28. doi:10.3390/ijms252413410

18.Soltanfar A, Meimandi Parizi A, Foad-Noorbakhsh M, Sayyari M, Iraji A. The healing effects of thymoquinone on experimentally induced traumatic tendinopathy in rabbits. J Orthop Surg Res. 2023;18(1):1–9. doi:10.1186/s13018-023-03706-8

19.Ulfah N, Sintano J, Arkan Yarus AM, Wardani PA, Maduratna E, Krismariono A. Antibacterial Activity Evaluation of Mouth Rinse containing Nigella sativa Extract Compared to Doxycycline 0,1% against Porphyromonas gingivalis and Agregatibacter actinomycetemcomitans. Res J Pharm Technol. 2023;16(9):4336–40. doi:10.52711/0974-360X.2023.00710

20.Chen WP, Tang JL, Bao JP, Wu LD. Thymoquinone inhibits matrix metalloproteinase expression in rabbit chondrocytes and cartilage in experimental osteoarthritis. Exp Biol Med. 2010;235(12):1425–31. doi:10.1258/ebm.2010.010174

21.Baştuğ AY, Tomruk CÖ, Güzel E, Özdemir İ, Duygu G, Kütan E. The effect of local application of thymoquinone, Nigella sativa’s bioactive component, on bone healing in experimental bone defects infected with Porphyromonas gingivalis. J Periodontal Implant Sci. 2022;52(3):206–19. doi:10.5051/jpis.2101360068