Antioxidant Activity and Phytochemical Composition of Thai Traditional Cannabis Longevity Recipes: In Vitro Evaluation of the Phontecho Remedy
Main Article Content
Abstract
Thai traditional medicine has historically incorporated cannabis-based remedies to treat fever, pain, inflammation, insomnia, and to promote longevity. Because antioxidant activity is associated with anti-aging effects, this study investigated the antioxidant potential and phytochemical composition of the Phontecho remedy using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. Phytochemical profiling was performed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Phontecho exhibited notable antioxidant capacity, with a DPPH half-maximal inhibitory concentration (IC₅₀) of 50.33 ± 0.83 µg/mL, an ABTS IC₅₀ of 9.51 ± 0.36 µg/mL, and a FRAP of 382.47 ± 8.61 mmol Fe²⁺/100 g extract. The extract contained high total phenolic content (85.74 ± 2.49 mg gallic acid equivalents/g extract) and moderate total flavonoid content (34.51 ± 0.11 mg quercetin equivalents/g extract). HPLC analysis identified cannabinoids (THCV, Δ⁹-THC, CBDV, CBGA, CBC) and phenolic compounds (gallic acid, quercetin), while GC–MS profiling revealed eugenol, (+)-2-bornanone, γ-sitosterol, and vitamin E. Antioxidant activity correlated with cannabinoid and phenolic acid contents. These phytochemicals provide a mechanistic basis for the antioxidant efficacy of the Phontecho remedy. The findings support its traditional use as a longevity-promoting remedy and highlight potential as a natural antioxidant for pharmacological applications.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Yongram C, Meeboonya R, Chokchaisiri S, Wonganan O, Sansila W, Kaewudom S, Kakatum N, Kanjanakaroon A, Kamoltham T, Roongpisuthipong C, Sripan P. A qualitative ethnopharmacological analysis of cannabis-based formulations for insomnia in Thai traditional medicine recipes. Trop J Nat Prod Res. 2025; 6(6):43. https://doi.org/10.26538/tjnpr/v9i6.43
2.Chokevivat V. The role of Thai traditional medicine in health promotion. In: The 6th Global Conference on Health Promotion; 2005; Bangkok, Thailand. p.1–25.
3.Laohavanich M. Political economy of cannabis in Thailand. Chulalongkorn Med J. 2022; 66(1):11. https://doi.org/10.58837/ CHULA.CMJ.66.1.11
4.Al Naqbi K, Manoharan R, Nair CS, Kandhan K, Alyafei MS, Jaleel A. Exploring the antioxidant potential of medicinal plants in the United Arab Emirates (UAE): Emphasizing their significance in novel drug development. Pharm Pract. 2025; 23(1):3113. https://doi.org/10.18549/PharmPract.2025.1.3113
5.Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the longevity potential of natural phytochemicals: A comprehensive review of active ingredients in dietary plants and herbs. J Agric Food Chem. 2024; 72(45):24908–24927. https://doi.org/ 10.1021/acs.jafc.4c07756
6.Nutmakul T, Chewchinda S. Synergistic effect of Trikatuk, a traditional Thai formulation, on antioxidant and alpha-glucosidase inhibitory activities. Heliyon. 2023; 9(1):e13063. https://doi.org/10.1016/j.heliyon.2023.e13063
7.Promchiang J, Aukkanimart R, Sriraj P. Anti-hepatocellular carcinoma and antioxidant activities of a Thai traditional liver disease formulation: GC-MS and FTIR profiling. J Appl Pharm Sci. 2025; 15(08):135–146. https://doi.org/10.7324/ JAPS.2025.219038
8.Masraksa W, Daodee S, Monthakantirat O, Boonyarat C, Khamphukdee C, Kwankhao P, Mading A, Muenhong P, Maneenet J, Awale S, Matsumoto K, Chulikhit Y. Suk-SaiYasna remedy, a traditional Thai medicine, mitigates stress-induced cognitive impairment via Keap1-Nrf2 pathway. Int J Mol Sci. 2025; 26(11):5388. https://doi.org/10.3390/ijms26115388
9.Department of Thai Traditional and Alternative Medicine, Ministry of Public Health. Collection of conserved Thai traditional medicine wisdom: National Thai medicine formulas incorporating cannabis. Nonthaburi: Ministry of Public Health; 2021.
10.Verma P, Singh B, Sharma P, Tukra S, Ait Kaddour A, Bhat Z. Mechanistic advances and therapeutic applications of Zingiber officinale Roscoe. Food Chem Adv. 2025; 8:101060. https://doi.org/10.1016/j.focha.2025.101060
11.Valarezo E, Ledesma-Monteros G, Jaramillo-Fierro X, Radice M, Meneses MA. Antioxidant application of clove (Syzygium aromaticum) essential oil in meat and meat products: A systematic review. Plants. 2025; 14(13):1958. https://doi.org /10.3390/plants14131958
12.Priyanjani HA, Senarath RM, Senarath WTPSK, Munasinghe M. Propagation, phytochemistry and pharmacology of Plumbago indica: A review. J Pharm Res Int. 2021; 33:188–202.
13.Luca SV, Gaweł-Bęben K, Strzępek-Gomółka M, Czech K, Trifan A, Zengin G, Korona-Glowniak I, Minceva M, Gertsch J, Skalicka-Woźniak K. Insights into the phytochemical and multifunctional biological profile of spices from the genus Piper. Antioxidants (Basel). 2021; 10(10):1642. https://doi.org/10.3390/antiox10101642
14.Ministry of Public Health. The announcement to define the Thailand national traditional medicine textbook and Thailand national traditional pharmacopoeia. Bangkok: Department for Development of Thai Traditional and Alternative Medicine, Royal Thai Government Gazette; 2016.
15.Yongram C, Panyatip P, Siriparu P, Ratha J, Sungthong B, Tadtong S, Puthongking P. Influence of maturity stage on tryptophan, phenolic, flavonoid, and anthocyanin content, and antioxidant activity of Morus alba L. fruit. Rasayan J Chem. 2022; 15(3):1693–701. http://doi.org/10.31788/ RJC.2022.1 536958
16.Maroof K, Chen KF, Lee RFS, Goh BH, Mahendra CK, Siow LF, Gan SH. A preliminary study on phenolics, antioxidant and antibacterial activities of Acacia mangium and Garcinia mangostana propolis collected by Geniotrigona thoracica. Food Chem Adv. 2023; 2:100255. https://doi.org/10.1016 /j.focha.2023.100255
17.Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 2023; 233:123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
18.Siriparu P, Panyatip P, Pota T, Ratha J, Yongram C, Srisongkram T, Sungthong B, Puthongking, P. Effect of germination and illumination on melatonin and its metabolites, phenolic content, and antioxidant activity in mung bean sprouts. Plants. 2022; 11:2990. https://doi.org/10.3390/plants11212990
19.Čopra-Janićijević A, Culum D, Vidic D, Tahirović A, Klepo L, Bašić N. Chemical composition and antioxidant activity of the endemic Crataegus microphylla Koch subsp. malyana KI Chr. & Janjić from Bosnia. Ind Crops Prod. 2018; 113:75–79. https://doi.org/10.1016/j.indcrop.2018.01.016
20.Chen X, Deng H, Heise JA, Puthoff DP, Bou-Abboud N, Yu H, Peng J. Contents of cannabinoids in hemp varieties grown in Maryland. ACS Omega. 2021; 6(47):32186–32197. https://doi.org/10.1021/acsomega.1c04992
21.Palmieri S, Maggio F, Pellegrini M, Ricci A, Serio A, Paparella A, Lo Sterzo C. Effect of the distillation time on the chemical composition, antioxidant potential and antimicrobial activity of essential oils from different Cannabis sativa L. cultivars. Molecules. 2021; 26(16):4770. https://doi.org/10.3390/ molecules26164770
22.Sukweenadhi J, Yunita O, Setiawan F, Kartini K, Siagian MT, Danduru N, Avanti C. Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas. 2020; 21(5):2062–2067. https://doi.org/10.13057/biodiv/d210532
23.Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020; 1:60–69. https://doi.org/ 10.1002/fft2.10
24.Rufino MSM, Alves RE, Brito ES, Jiménez JP, Saura-Calixto F, Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010; 121(4):996–1002. https://doi.org/10.1016 /j.foodchem.2010.01.037
25.Phuyal N, Jha PK, Raturi PPR, Rajbhandary S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci World J. 2020; 2020:8780704. https://doi.org/10.1155/2020/8780704
26.Nurcholis W, Putri DNS, Husnawati H, Aisyah SI, Priosoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Ann Agric Sci. 2021; 66:58–62. https://doi.org/10.1016/j.aoas.2021.04.001
27.Kiokias S, Proestos C, Oreopoulou V. Phenolic acids of plant origin: A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods. 2020; 9(4):534. https://doi.org/10.3390/ foods9040534
28.Michalak M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phenolic profile and comparison of the antioxidant, anti-ageing, anti-inflammatory, and protective activities of Borago officinalis extracts on skin cells. Molecules. 2023; 28(2):868. https://doi.org/10.3390/molecules28020868
29.Puthongking P, Ratha J, Panyatip P, Datham S, Siriparu P, Yongram C. The effect of extraction solvent on the phytochemical contents and antioxidant and acetylcholinesterase inhibitory activities of extracts from the leaves, bark and twig of Dipterocarpus alatus. Trop J Nat Prod Res. 2023; 7(12):5595–5600. https://tjnpr.org/index.php/home/article/view/3202
30.Dawidowicz AL, Olszowy-Tomczyk M, Typek R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action. Fitoterapia. 2021; 152:104915. https://doi.org/10.1016/ j.fitote.2021.104915
31.Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid Med Cell Longev. 2018; 2018:3957262. https://doi.org/ 10.1155/2018/3957262
32.Keramat M, Golmakani MT, Durand E, Villeneuve P, Hosseini SMH. A comparison of antioxidant activities by eugenyl acetate and eugenyl butyrate at frying temperature. J Food Process Preserv. 2021; 45(4):e15320. https://doi.org/10.1111/jfpp.15320
33.Qin B, Yang K, Cao R. Synthesis and antioxidative activity of piperine derivatives containing phenolic hydroxyl. J Chem. 2020; 2020:2786359. https://doi.org/10.1155/2020/2786359
34.Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010; 277(9):2022–2037. https://doi.org/10.1111/j.1742-4658.2010.07633.x
35.Sundarraj S, Thangam R, Sreevani V, Kaveri K, Gunasekaran P, Achiraman S, Kannan S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol. 2012; 141(3):803–809. https://doi.org/10.1016/j.jep.2012.03.014
36.Yazici ZMC, Bilge B, Bolkent S. Anti-inflammatory potential of delta-9-tetrahydrocannabinol in hyperinsulinemia: An experimental study. Mol Biol Rep. 2022; 49(12):11891–11899. https://doi.org/10.1007/s11033-022-07996-9
37.Shabana SM, Gad NS, Othman AI, Mohamed AF, El-Missiry MA. β-caryophyllene oxide induces apoptosis and inhibits proliferation of A549 lung cancer cells. Med Oncol. 2023; 40(7):189. https://doi.org/10.1007/s12032-023-02022-9
38.Gushiken LFS, Beserra FP, Hussni MF, Gonzaga MT, Ribeiro VP, de Souza PF, Campos JCL, Massaro TNC, Hussni CA, Takahira RK, Marcato PD, Bastos JK, Pellizzon CH. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization agent in a rat skin wound excision model. Oxid Med Cell Longev. 2022; 2022:9004014. https://doi.org/10.1155/ 2022/9004014
39.Türkez H, Celik K, Toğar B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocyte cells in vitro. Cytotechnology. 2014; 66(4):597–603. https://doi.org/10.1007/ s10616-013-9611-1
40.Rodriguez S, Sueiro RA, Murray AP, Leiro JM. Bioactive sesquiterpene obtained from Schinus areira L. (Anacardiaceae) essential oil. Proceedings. 2019; 41(1):85. https://doi.org /10.3390/ecsoc-23-06649
41.Bansod S, Chilvery S, Saifi MA, Das TJ, Tag H, Godugu C. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model. Environ Toxicol. 2021; 36(4):530–539. https://doi.org/10.1002/tox.23058
42.Rychter AMR, Hryhorowicz S, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity: A narrative review. Clin Nutr. 2022; 41(7):1557–1565. https://doi.org /10.1016/j.clnu.2022.04.032
43.Ali L, Khan S, Nazir M, Raiz N, Naz S, Zengin G, Mukhtar M, Parveen S, Shazmeen N, Saleem M, Tareen RB. Chemical profiling, in vitro biological activities and Pearson correlation between phenolic contents and antioxidant activities of Caragana brachyantha Rech.f. S. Afr J Bot. 2021; 140:189–193. https://doi.org/10.1016/j.sajb.2021.04.009
44.Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13:757–772. https://doi.org/10.2147/CIA.S158513


