Antimicrobial Activity and Time-kill Kinetics of Moringa oleifera Lam. Leaf Extracts Against Human Pathogenic Bacteria

Main Article Content

Asiska P. Dewi
Kony Putriani
Vonny K. Utama
Darmadi Madi
Siti Juariah

Abstract

Moringa oleifera Lam. exhibits various pharmacological activities, including antibacterial, antioxidant, and anti-inflammatory effects. This study aimed to investigate the antimicrobial properties of M. oleifera leaf extracts and their time-kill kinetics against human pathogenic bacteria. Fresh M. oleifera leaves were collected, cleaned, dried, and extracted with ethanol. Phytochemical screening and total flavonoid content (TFC) were determined. Antimicrobial activity against Staphylococcus aureus, S. epidermidis, Escherichia coli, and Pseudomonas aeruginosa was assessed via disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics. Phytochemical analysis revealed the presence of flavonoids, alkaloids, terpenoids, tannins, and saponins, with a TFC of 8.95 mgEQ/g. Antibacterial testing demonstrated that higher concentrations of moringa leaf extract (2%, 4%, 6%, and 8%) produced larger inhibition zones, with the 8% concentration showing the most significant (p < 0.005) effect, particularly against Staphylococcus aureus (9.89 ± 0.28 mm), Staphylococcus epidermidis (9.59 ± 0.17 mm), Pseudomonas aeruginosa (9.05 ± 0.12 mm), and Escherichia coli (9.00 ± 0.27 mm). The MIC for all tested bacteria was 1.25 mg/mL, and the MBC ranged from 1.25 to 5 mg/mL. Time-kill assays showed that the extract was bactericidal to S. aureus and S. epidermidis at 4 x MIC, with complete bacterial elimination after 4 hours. However, P. aeruginosa and E. coli exhibited a reduction of more than 3 log10 CFU/mL, indicating bactericidal activity at higher concentrations. These findings support moringa leaf extract as a potential natural alternative for combating bacterial infections, particularly against Gram-positive bacteria.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Antimicrobial Activity and Time-kill Kinetics of Moringa oleifera Lam. Leaf Extracts Against Human Pathogenic Bacteria. (2025). Tropical Journal of Natural Product Research , 9(12), 6110 – 6118. https://doi.org/10.26538/tjnpr/v9i12.27

References

1.Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int J Mol Sci. 2023; 24(3):2098-2134. Doi: 10.3390/ijms24032098

2.Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol. 2022; 74(3):296-320. Doi: 10.1093/jpp/rgab131

3.Sharma K, Kumar M, Waghmare R, Suhag R, Gupta OP, Lorenzo JM, Prakash S, Radha, Rais N, Sampathrajan V, Thappa C, Anitha T, Sayed AAS, Abdel Wahab BA, Senapathy M, Pandiselvam R, Dey A, Dhumal S, Amarowicz R, Kennedy JF. Moringa (Moringa oleifera Lam.) polysaccharides: extraction, characterization, bioactivities, and industrial application. Int J Biol Macromol. 2022; 209:763-778. Doi: 10.1016/j.ijbiomac.2022.04.047

4.Wen Z, Tian H, Liang Y, Guo Y, Deng M, Liu G, Li Y, Liu D, Sun B. Moringa oleifera polysaccharide regulates colonic microbiota and immune repertoire in C57BL/6 mice. Int J Biol Macromol. 2022;198:135-146. Doi: 10.1016/j.ijbiomac.2021.12.085

5.Abidin Z, Huang HT, Liao ZH, Chen BY, Wu YS, Lin YJ, Nan FH. Moringa oleifera leaves’ extract enhances nonspecific immune responses, resistance against Vibrio alginolyticus, and growth in Whiteleg Shrimp (Penaeus vannamei). Animals. 2022; 12(1):42-62. Doi: 10.3390/ani12010042

6.Wang F, Yifan B, Chen Z, Libin Z, Washim K, Sahifa S, Sayeed A, Esra C, Krystyna SW, Liang Z, Jesus SG, Hui C, Zebin W, Xinchun S, Jianbo X. Bioactive components and antidiabetic properties of Moringa oleifera Lam. Crit Rev Food Sci Nutr. 2022; 62(14):3873-3897. Doi: 10.1080/10408398.2020.1870099

7.Attia SL, Odhiambo SA, Mogaka JN, Ondondo R, Schadler A, McQuerry K, Fuchs GJ, Williams JE, McGuire MK, Waterman C, Schulze K, Owuor PM. Impact of Maternal Moringa oleifera Leaf Supplementation on Milk and Serum Vitamin A and Carotenoid Concentrations in a Cohort of Breastfeeding Kenyan Women and Their Infants. Nutrients. 2024;16(19):3425-3443. doi: 10.3390/nu16193425

8.Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. J Sci Food Agric. 2023; 103(15):7343-7361. Doi: 10.1002/jsfa.12892

9.Trigo C, Castello ML, Ortola MD. Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. Plant Foods Hum Nutr. 2023; 78(1):25-37. Doi: 10.1007/s11130-022-01023-9

10.Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A tree of life as a promising medicinal plant for neurodegenerative diseases. J Agric Food Chem. 2021; 69(48):14358-14371. Doi: 10.1021/acs.jafc.1c04581.

11.Watanabe S, Okoshi H, Yamabe S, Shimada M. Moringa oleifera Lam. in diabetes mellitus: A systematic review and meta analysis. Molecules. 2021; 26(12):3513-3531. Doi: 10.3390/molecules26123513.

12.Ercan K, Gecesefa OF, Taysi ME, Ali Ali OA, Taysi S. Moringa oleifera: A review of its occurrence, pharmacological importance and oxidative stress. Mini Rev Med Chem. 2021; 21(3):380-396. Doi: 10.2174/1389557520999200728162453.

13.Mohanty M, Mohanty S, Bhuyan SK, Bhuyan R. Phytoperspective of Moringa oleifera for oral health care: An innovative ethnomedicinal approach. Phytother Res. 2021; 35(3):1345-1357. Doi: 10.1002/ptr.6896

14.Gomez MS, Diaz PLE, Vicente CI, Jurado C, Iturmendi N, Martín RMC, Calle N, Duenas M, Picon MJ, Marcos A, Nova E. Moringa oleifera Leaf Supplementation as a Glycemic Control Strategy in Subjects with Prediabetes. Nutrients. 2021;;14(1):57-72. doi: 10.3390/nu14010057

15.Alasmari AK, Albalawi SM, Athar MT, Khan AQ, Alshahrani H, Islam M. Moringa oleifera as an anticancer agent against Breast and colorectal cancer cell lines. PLoS One. 2015; 10(8):1-14. Doi: 10.1371/journal.pone.0135814

16.Ma ZF, Ahmad J, Zhang H, Khan I, Muhammad S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. South Afr J Bot. 2020; 12(9):40-46. Doi: 10.1016/j.sajb.2018.12.002

17.Chojnacki M, Dobrotka C, Osborn R, Johnson W, Young M, Meyer B, Laskey E, Wozniak RAF, Dewhurst S, Dunman PM. Evaluating the antimicrobial properties of commercial hand sanitizers. ASM Journals. 2021; 6(2):1-15. Doi: 10.1128/msphere.00062-21

18.Chen H, Zhang J, He Y, Lv Z, Liang Z, Chen J, Li P, Liu J, Yang H, Tao A, Liu X. Exploring the role of Staphylococcus aureus in inflammatory diseases. Toxins (Basel). 2022;14(7):464-507. Doi: 10.3390/toxins14070464

19.Otto M. Staphylococcus epidermidis the accidental pathogen. Nat Rev Microbiol. 2009; 7(8):555-567. doi: 10.1038/nrmicro2182

20.Chen Z. Mechanisms and Clinical Relevance of Pseudomonas aeruginosa Heteroresistance. Surg Infect. 2023; 24(1):27-38. Doi: 10.1089/sur.2022.349.

21.Lindstedt BA, Finton MD, Porcellato D, Brandal LT. High frequency of hybrid Escherichia coli strains with combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) virulence factors isolated from human faecal samples. BMC Infect Dis. 2018; 18(1):544-556. doi: 10.1186/s12879-018-3449-2.

22.Bax HI, Bakker WIAJM, Corne DVP, Aart VDM, Verbon A, Jurriaan EMS. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs. Tuberculosis. 2017; 105:80-85. doi: 10.1016/j.tube.2017.04.010

23.Elumalai L, Nagarajan S, Anbalmani S, Murthy S, Manikkam R, Ramasamy B. Bioactive compound from marine seagrass Streptomyces argenteolus TMA13: combatting fish pathogens with time-kill kinetics and live-dead cell imaging. Braz J Microbiol. 2024; 55(3):2669-2681. doi: 10.1007/s42770-024-01407-w

24.Neag E, Stupar Z, Varaticeanu C, Senila M, Roman C. Optimization of lipid extraction from Spirulina spp. by ultrasound application and mechanical stirring using the taguchi method of experimental design. Molecules. 2022; 27(20):6794-6805. Doi: 10.3390/molecules27206794.

25.Wiwin W, Adang F, Rayyan A, Purri AN, Lucia NLTB. Synthesis, Characterization, and Application of Molecularly Imprinted Polymer-Modified Silica Gel for Andrographolide Purification from Andrographis paniculata (Burm.f.) Nees Methanol Extract. Trop J Nat Prod Res. 2023; 7(8):3761-3765. Doi: 10.26538/tjnpr/v7i8.28

26.Syahrina S, Asfianti V, Gurning K, Iksen. Phytochemical screening and anti-hyperuricemia activity test in vivo of ethanolic extract of shallot (Allium cepa L.) skin. Borneo J Pharn. 2020; 3(3):146-151. Doi: 10.33084/bjop.v3i3.1365

27.Khwunsiriwong S, Sichaem J, Jaramornburapong C, Premjit S, Funnimid N, Niyomdecha M. Phytochemical screening, total flavonoid and phenolic contents, and antioxidant activities of thai mango (Mangifera indica L.) extracts. Trop J Nat Prod Res. 2025; 9(6): 2470 –2474. Doi: 10.26538/tjnpr/v9i6.17

28.Darah I, Lim SH, Nithianantham K. Effects of methanol extract of Wedelia chinensis Osbeck (Asteraceae) leaves against pathogenic bacteria with emphasise on Bacillus cereus. Indian J Pharm Sci. 2013; 75(5):533–539. Doi: 10.4103/0250-474X.122845

29.Juariah S, Fazleen IAB, Mohd FAB, Susi E, Sri K, Azman M, Ahmad FMH. Antibacterial activity of Red Ginger (Zingiber officinale Var. Rubrum) and Black Turmeric (Curcuma caesia) extracts as growth inhibitors of Klebsiella pneumonia. Trop J Nat Prod Res. 2023; 7(6):3658-3665. Doi: 10.26538/tjnpr/v7i8.14

30.Jeong D, Dong HK, Jung WC, Hyunsook K, Soo KL, Hong SK, Jin HY, Kwang YS, Youngji K, Jin HP, Ho SJ, Soo HK, Kun HS. Antibacterial effect of crude extracts of Kaempferia Parviflora (Krachaidam) against Cronobacter Spp. and enterohemorrhagic Escherichia Coli (EHEC) in various dairy foods: A preliminary study. J Milk Sci Biotechnol. 2016; 34(2):63–68.

31.Techaoei S. Time-kill kinetics and antimicrobial activities of Thai medical plant extracts against fish pathogenic bacteria. J Adv Pharm Technol Res. 2022; 13(1):25-29. doi: 10.4103/japtr.japtr_241_21

32.Epping MS, Wedde S, Grundmann A, Radukic M, Groger H, Hummel A, Viefhues M. Dielectrophoretic analysis of the impact of isopropyl alcohol on the electric polarisability of Escherichia coli whole-cells. Anal Bioanal Chem. 2020; 412(16):3925-3933. Doi: 10.1007/s00216-020-02451-9.

33.Yee LS, Abu Bakar MF, Abdullah N, Abu Bakar FI, Fatmawati S. Optimization of total phenolic content, total flavonoid content and anti-gout properties of polyherbal formulation. J Complement Integr Med. 2023; 20(4):772-778. doi: 10.1515/jcim-2020-0141

34.Nhu TT, Nguyen QD, Cong HN, Anh DLT, Behra P. Characteristics and Relationships between total polyphenol and flavonoid contents, antioxidant capacities, and the content of caffeine, gallic acid, and major catechins in Wild Ancient and Cultivated Teas in Vietnam. Molecules. 2023; 28(8):3470-3487. Doi: 10.3390/molecules28083470.

35.Utami YP, Yulianty P, Djabir YY, Alam G. Antioxidant activity, total phenolic and total flavonoid contents of Etlingera elatior(Jack) R.M. Smith from North Luwu, Indonesia. Trop J Nat Prod Res. 2024; 8(1):5955-5961. Doi: 10.26538/tjnpr/v8i1.34

36.Gupta T, Kataria R, Sardana S. A comprehensive review on current perspectives of flavonoids as antimicrobial agent. Curr Top Med Chem. 2022; 22(6):425-434. Doi: 10.2174/1568026622666220117104709.

37.Prasetyaningrum A, Bakti J, Ratnawati, Nur R, Teguh R, Gian RP. Sequential microwave-ultrasound assisted extraction of flavonoid from Moringa oleifera: Product characteristic, antioxidant and antibacterial activity. Indones J Chem. 2022; 22(2), 303–316. Doi: 10.22146/ijc.65252

38.Yusoff NAH, Rukayadi Y, Abas F, Khatib A, Hassan M. Antimicrobial stability of Cosmos caudatus extract at varies pH and temperature, and compounds identification for application as food sanitiser. Food Res. 2021; 5(3):83–91. Doi: 10.26656/fr.2017.5(3).710

39.Juariah S, Abu Bakar FI, Abu Bakar MF, Kartini S, Dewi AP, Suryo A, Endrini S. Effectiveness and mechanism of Zingiber officinale var. rubrum (red ginger) ethanol extracts as an inhibitor of Eschericia coli and Staphylococcus aureus. Food Research. 2024; 8(5): 61-69. Doi: 10.26656/fr.2017.8(S5).11

40.Siramon P and Wongsheree T. Chemical composition, tyrosinase inhibitory activity and antibacterial activity of Coconut Coir Dust Extract. Trop J Nat Prod Res. 2022; 6(7):1135-1139. Doi: 10.26538/tjnpr/v6i7.16

41.Faisal MA, Bashir HAF, Sha AM, Raad AH. Antimicrobial effect of Moringa oleifera L. and red pomegranate against clinically isolated Porphyromonas gingivalis: in vitro Study. Arch Razi Inst. 2022; 77(4):1405-1419. Doi: 10.22092/ARI.2022.357513.2051.

42.Olajuyigbe O, and Afolayan AJ. In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii de wild against bacteria in shigellosis. Molecules. 2012; 17(2) 2103–2118. Doi:10.3390/molecules17022103

43.Nuryanti A, Yulinah E. and Fidrianny I. Activity of several plant extracts against drug sensitive and drug resistant microbes. Procedia Chemistry. 2014;13:164–169. Doi: 10.1016/j.proche.2014.12.021

44.Witkowska A, Hickey D, Gomez MA and Wilkinson M. Evaluation of antimicrobial activities of commercial herbandspice extracts against selected food-borne bacteria. JFR. 2013; 2(4):37-54. Doi: 10.5539/jfr.v2n4p37

45.Alwash MA, Ibrahim N and Ahmad WY. Identification and mode of action of antibacterial components from Melastoma Malabathricum Linn leaves. Am J Infect Dis. 2013; 9(2):46-58. Doi: 10.3844/ajidsp.2013.46.58

46.Mamman PH, Mshelia WP, Susbatrus SC and Sambo S. Antibacterial effects of crude extract of Azadirachtaindica against Escherichia coli, Salmonella spp. and Staphylococcus aureus. Int J Med Med Sci. 2013; 5(1):14-18. Doi: 10.5897/IJMMS12.017

47.Miksusanti, Betty SLJ, Rizal S, Bambang P, Gatot TM. Antibacterial activity of temukunci tuber (Kaempheria pandurata) essential oil against Bacilluscereus. Med J Indones. 2009;18(1) 10–17. Doi: 10.13181/mji.v18i1.331

48.Kusuma S, Septyadi R, and Sofian F. Inhibition of Bacillus spores germination by cinnamon bark, fingerroot, and moringa leaves extract. J Adv Pharm Technol Res. 2022; 13:7-10. Doi: 10.4103/japtr.japtr_286_21

49.Sabandar CW, Norizan A, Faridahanim MJ, Sahidin I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry. 2013;85:7–29. Doi: 10.1016/j.phytochem.2012.10.009

Ta CAK. and John TA. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules. 2016; 21(1):29-55. Doi: 10.3390/molecules21010029