Anticancer Activity of Ethanol Extract of Kleinhovia hospita L. Leaves Against HCT-116 Colorectal Cancer Cells

Main Article Content

Alimuddin Tofrizal
Elzam N. Zulfikri
Bramadi Arya
Rita Maliza

Abstract

Colorectal cancer is characterized by abnormal cell growth in the colon or rectum and is strongly associated with increased expression of cyclooxygenase-2 (COX-2).  COX-2 activation enhances cell proliferation and suppresses apoptosis, thereby promoting cancer progression. Leaves of Kleinhovia hospita are known to contain alkaloids, flavonoids, and saponins, which may serve as anticancer agents by inhibiting COX-2 activity. This study aimed to evaluate the anticancer potential of bioactive compounds in the ethanol extracts of Kleinhovia hospita L. leaves using both in vitro and in silico approaches. The extract was obtained by maceration with 96% ethanol. Cytotoxicity against HCT-116 colorectal cancer cells was evaluated using the MTT assay at extract concentrations of 500, 250, 125, 62.5, and 31.25 μg/mL. LC-MS analysis identified the compounds, which were further screened using PASS Online, ProTox 3.0, and Lipinski’s rule, followed by molecular docking against COX-2. The ethanol extract showed moderate cytotoxicity, with an IC50 value of 85.113 µg/mL. Fourteen compounds were predicted to possess anticancer-related bioactivities based on in silico screening. Among them, N-trans-Feruloyltyramine demonstrated strong binding to COX-2 with an affinity of –8.3798 kcal/mol, surpassing the native ligand. These findings indicate that the ethanol extract of K. hospita leaves and its bioactive constituents may contribute to anticancer activity, potentially through COX-2–related pathways, as suggested by in silico analyses.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Anticancer Activity of Ethanol Extract of Kleinhovia hospita L. Leaves Against HCT-116 Colorectal Cancer Cells. (2025). Tropical Journal of Natural Product Research , 9(12), 6046 – 6055. https://doi.org/10.26538/tjnpr/v9i12.19

References

1.Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3):229-263. doi:10.3322/caac.21834.

2.Lewandowska A, Rudzki G, Lewandowski T, Stryjkowska-Góra A, Rudzki S. Risk factors for the diagnosis of colorectal cancer. Cancer Control. 2022; 29:1-15.

3.Elisya Y, Junaedi, Saleha M, Safrina U. Identification and anticancer evaluation of Paliasa leaves (Kleinhovia hospita Linn) extracts obtained by subcritical extraction. Int J Sci Res Sci Technol. 2024; 11(4):398-409. doi:10.32628/IJSRST52411142.

4.Nalli M, Puxeddu M, La Regina G, Gianni S, Silvestri R. Emerging therapeutic agents for colorectal cancer. Molecules. 2021; 26(24):7463. doi:10.3390/molecules26247463.

5.Subramaniam S, Selvaduray KR, Radhakrishnan AK. Bioactive compounds: natural defense against cancer? Biomolecules. 2019; 9(12):758. doi:10.3390/biom9120758.

6.Wu QB, Sun GP. Expression of COX-2 and HER-2 in colorectal cancer and their correlation. World J Gastroenterol. 2015; 21(20):6206-14. doi:10.3748/wjg.v21.i20.6206.

7.Venkatachala S, Rajendran M. Correlation of COX-2 expression in colorectal carcinoma with clinicopathological features. Turk J Pathol. 2017; 33(3):228-234. doi:10.5146/tjpath.2016.01389.

8.Smith LF, Patterson J, Walker LT, Verghese M. Chemopreventive potential of sunflower seeds in a human colon cancer cell line. Int J Cancer Res. 2016;12(1):40-50. doi:10.3923/ijcr.2016.40.50

9.Tang J, Zhao J, Li Z. Ethanol extract of Artemisia sieversiana exhibits anticancer effects and induces apoptosis through a mitochondrial pathway involving DNA damage in COLO-205 colon carcinoma cells. Bangladesh J Pharmacol. 2015; 10(3):518-523. doi:10.3329/bjp.v10i3.23856.

10.Padhy I, Paul P, Sharma T, Banerjee S, Mondal A. Molecular mechanisms of action of eugenol in cancer: recent trends and advancement. Life (Basel). 2022; 12(11):1795. doi:10.3390/life12111795.

11.Paramita S. Tahongai (Kleinhovia hospita L.): a review of herbal medicine from East Kalimantan. J Tumbuh Obat Indones. 2016; 9(1):29-36.

12.Solihah I, Herlina, Anggraini F, Fitria N, Kirana M. The potential healing effect of Kleinhovia hospita L. leaves extract on second-degree burns in rats. J Adv Pharm Educ Res. 2023; 13:109-118. doi:10.51847/VusD92SyAU

13.Pratima NA, Gadikar R. Liquid chromatography–mass spectrometry and its applications: a brief review. Arch Org Inorg Chem Sci. 2018; 1(1):26-34. doi:10.32474/AOICS.2018.01.000103.

14.Maliza R, Syaidah R, Agusta I. Incision-wound healing activity of sunflower seed oil (Helianthus annuus L.): in vivo and in silico study. Farmacia. 2023;71(5):1001-1012. doi:10.31925/farmacia.2023.5.15

15.Bharadwaj N, Manimuthu MS, Vimal S, Radhakrishnan N. Evaluation of in vitro anti-cancer activity of methanolic leaf extract of Phoenix pusilla on colon cancer cell line. J Pharm Bioallied Sci. 2024; 16(Suppl 2):S1181-S1185. doi: 10.4103/jpbs.jpbs_522_23.

16.Dewa WJ, Handharyani E, Purwaningsih S, Mariya S. Cytotoxic activity of red eye snail (Cerithidea obtusa) extract on colon cancer cell WiDr. J Sain Vet. 2024; 42(2):129-135.

17.Hyun S, Kim B, Lin D, Hyun S, Yoon SH, Seo J. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system. J Pharmacol Toxicol Methods. 2018; 91:1-6. doi: 10.1016/j.vascn.2017.12.002

18.Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020; 12(2):457. doi:10.3390/nu12020457

19.Wahle KW, Brown I, Rotondo D, Heys SD. Plant phenolics in the prevention and treatment of cancer. Adv Exp Med Biol. 2010; 698:36-51. doi:10.1007/978-1-4419-7347-4_4

20.Saxena S, Rao PB. Comparative GS-MS and FT-IR analysis of Portulaca oleraceae L. and Portulaca quadrifida L. leaf extracts. Pharma Innov J. 2021; 10:40-48.

21.Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513-W520. doi:10.1093/nar/gkae303

22.Maheshwari DG, Shaikh NK. An overview on toxicity testing method. Int J Pharm Technol. 2016; 8:3834-3849.

23.Supandi, Yeni, Merdekawati F. In silico study of pyrazolylaminoquinazoline toxicity by Lazar, Protox, and Admet predictor. J Appl Pharm Sci. 2018; 8(2):119-129.

24.Yuliana Y, Herawati S. Phytochemical content and protective effect of Kleinhovia hospita L. leaves extract on pancreatic cytotoxicity in hyperglycemic rats. J Vet. 2016; 17(3):411-417.

25.Riyadi PH, Anggo AD, Suharto S, Tanod WA, Aryani A. Anti-inflammatory potential from tilapia (Oreochromis niloticus) viscera hydrolysate with bioinformatics analysis (Prediction of Activity Spectra for Substances–PASS). IOP Conf Ser Earth Environ Sci. 2021; 750:012056. doi:10.1088/1755-1315/750/1/012056.

26.Lee YR, Bae S, Kim JY, Lee JH, Cho DH, Kim HS, An IS, An S. Monoterpenoid loliolide regulates hair follicle inductivity of human dermal papilla cells by activating the Akt/β-catenin signaling pathway. J Microbiol Biotechnol. 2019; 29:1830-40. doi:10.4014/jmb.1908.08018.

27.Yang MH, Ha IJ, Ahn J, Kim C, Lee M, Ahn KS. Potential function of loliolide as a novel blocker of epithelial–mesenchymal transition in colorectal and breast cancer cells. Cell Signal. 2023; 105:110610. doi: 10.1016/j.cellsig.2023.110610.

28.Hassan STS. Brassicasterol with dual anti-infective properties against HSV-1 and Mycobacterium tuberculosis, and cardiovascular protective effect: Nonclinical in vitro and in silico assessments. Biomedicines. 2020; 8:132. doi:10.3390/biomedicines8050132.

29.Xu Y, Ryu S, Lee YK, Lee HJ. Brassicasterol from edible aquacultural Hippocampus abdominalis exerts an anti-cancer effect by dual-targeting AKT and AR signaling in prostate cancer. Biomedicines. 2020; 8:370. doi:10.3390/biomedicines8090370.

30.Kariyil BJ. Antineoplastic drugs: Treatment principles and toxicity. Vet World. 2010; 4:380-382.

31.Kummar S, Murgo AJ, Tomaszewski JE, Doroshow JH. Therapeutic targeting of cancer cells: Era of molecularly targeted agents. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, editors. Abeloff’s clinical oncology. 5th ed. Philadelphia: Churchill Livingstone; 2014. p. 407-22. doi:10.1016/B978-1-4557-2865-7.00028-X.

32.Lipinski CA. Rule of five in 2015 and beyond: Target and ligand structural limitation, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev. 2016; 101:34-41.

33.Butnarasu C, Garbero OV, Petrini P, Visai L, Visentin S. Permeability assessment of a high-throughput mucosal platform. Pharmaceutics. 2023; 15:380. doi:10.3390/pharmaceutics15020380.

34.Wulandari RP, Gabriel K, Nurdin HA, Pakhrul DHF, Harits SS, Prameswari N, Pribadi APA, Aulifa DL. In silico study of secondary metabolite compounds in parsley (Petroselinum crispum) as a drug therapy for blood cancer (myeloproliferative neoplasm) targeting JAK-2. Indones J Chem Sci. 2023; 12:216-228.

35.Weni M, Safithri M, Seno DSH. Molecular docking of active compounds Piper crocatum on the α-glucosidase enzyme as antidiabetic. Indones J Pharm Sci Technol. 2020; 7:64-70.

36.Ojo OA, Ojo AB, Okolie C, Nwakama MC, Iyobhebhe M, Evbuomwan IO. Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against Alzheimer’s disease via pharmacophore modeling, Auto-QSAR, and molecular docking approaches. Molecules. 2021; 26:1996. doi:10.3390/molecules26071996.

37.Mo J, Bai Y, Liu B, Zhou C, Zou L, Gan L. Two New Cycloartane Triterpenoids from Kleinhovia hospita. Helv Chim Acta. 2014;97(6):887-894. doi:10.1002/hlca.201300331.

38.Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010:1-21. doi:10.1155/2010/215158.