Green Synthesis of Selenium Nanoparticles Using Arthrospira platensis Biomass and Their Anti-Hyperglycemic Effect: An In Vivo Research in Mice
Main Article Content
Abstract
Diabetes mellitus, a chronic metabolic disorder marked by persistent hyperglycemia, often requires multifaceted therapeutic approaches. Although Arthrospira platensis exhibits antihyperglycemic properties, its bioactive compounds have limited bioavailability. This study synthesized selenium-functionalized A. platensis nanoparticles (Se-APNPs) using Na₂SeO₃ and evaluated their effects in diabetic mice. Arthrospira platensis powdered (raw material) (AP-P), Se-APNPs (10% and 20% v/v), infused AP-P (10% v/v), and glibenclamide were tested following diabetes induction via alloxan. The 10% Se-APNPs significantly lowered fasting glucose (84 mg/dL), outperforming glibenclamide, while infused AP-P showed superior wound healing (94.5%), comparable to the drug (96.6%). Growth performance was optimal in the 10% Se-APNP group, but higher concentrations indicated potential testicular toxicity. These findings highlight Se-APNPs as a promising approach for glycemic regulation and metabolic improvement, with infused AP-P excelling in wound repair. Dose optimization is crucial for maximizing efficacy and minimizing toxicity.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Çam ME, Yıldız S, Ertaş B, Acar AE, Taşkın T, Kabasakal L. Antidiabetic effects of Salvia triloba and Thymus praecox subsp. skorpilii var. skorpilii in a rat model of streptozotocin/nicotinamide-induced diabetes. MARMARA Pharm J. 2017; 21(4):818-827.
2. Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024; 7(3):e2004.
3. Henik Tri R, Zaqqi U, Anis Ika Nur R, Faqih R, Siwi Sri W. The life diabetes conversation map improves control of diabetes among the elderly: challenges and modifications for the Indonesian community - An integrative review. KnE Med. 2023; 3(3):185-193.
4. Verma AK, Goyal Y, Bhatt D, Dev K, Alsahli MA, Rahmani AH, Almatroudi A. A compendium of perspectives on diabetes: a challenge for sustainable health in the modern era. Diabetes Metab Syndr Obes. 2021; 14:2775-2787.
5. Udeh NE, Nnadi CO, Anaga AO, Asuzu IU. Bioactivity-guided fractionation of a methanol leaf extract from Gnetum africanum with potential anti-diabetic activity:(-)-Epicatechin as the active principle. J. Res Pharm. 2021; 25:72-79.
6. Cam ME, Crabbe-Mann M, Alenezi H, Hazar-Yavuz AN, Ertas B, Ekentok C, Ozcan GS, Topal F, Guler E, Yazir Y, Parhizkar M, Edirisinghe M. The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing. Eur Polym J. 2020; 134:109844-109855.
7. Wu H, Li T, Lv J, Chen Z, Wu J, Wang N, Wu H, Xiang W. Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter. Foods. 2021; 10(12):294-308.
8. Otero C, Verdasco-Martín CM. Preparation and characterization of a multicomponent Arthrospira platensis biomass hydrolysate with superior anti-hypertensive, Anti-hyperlipidemic, and antioxidant activities via selective proteolysis. Mar Drugs. 2023; 21(4):255-275.
9. Hatami E, Ghalishourani S-S, Najafgholizadeh A, Pourmasoumi M, Hadi A, Clark CCT, Assaroudi M, Salehi-sahlabadi A, Joukar F, Mansour-Ghanaei F. The effect of spirulina on type 2 diabetes: a systematic review and meta-analysis. J. Diabetes Metab Disord. 2021; 20(1):883-892.
10. Bitam A, Aissaoui O. Chapter 32 - Spirulina platensis, oxidative stress, and diabetes. In: Preedy VR, editor. Diabetes (Second Edition). Algeria: Academic Press; 2020. p. 325-331.
11. Hu S, Fan X, Qi P, Zhang X. Identification of anti-diabetes peptides from Spirulina platensis. J. Funct Foods. 2019; 56:333-341.
12. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl Phycol. 2017; 29(2):949-982.
13. Deng W, Wang H, Wu B, Zhang X. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B. 2019; 9(1):74-86.
14. Rudi L, Zinicovscaia I, Cepoi L, Chiriac T, Peshkova A, Cepoi A, Grozdov D. Accumulation and effect of silver nanoparticles functionalized with Spirulina platensis on rats. Nanomaterials. 2021; 11(11):2992-3006.
15. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020; 10(20):8996-9031.
16. Hassan I, Ebaid H, Al-Tamimi J, Habila MA, Alhazza IM, Rady AM. Selenium nanoparticles mitigate diabetic nephropathy and pancreatopathy in rat offspring via inhibition of oxidative stress. J. King Saud Univ Sci. 2021; 33(1):101265.
17. Palanisamy K, Paramasivam P, Jayakumar S, Maniam G, Rahim M, Govindan N. Economical cultivation system of microalgae Spirulina platensis for lipid production. IOP Conf Ser Earth Environ Sci. 2021; 641(1):012022.
18. Gheda SF, Abo-Shady AM, Abdel-Karim OH, Ismail GA. Antioxidant and antihyperglycemic activity of Arthrospira platensis (Spirulina platensis) methanolic extract: in vitro and in vivo study. Egypt J. Bot. 2021; 61(1):71-93.
19. Naveed M, Ali I, Aziz T, Ali N, Hassan A, Rahman SU, Aziz R, Alharbi M. Assessment of Melia azedarach plant extracts activity against hypothetical protein of mycobacterium tuberculosis via GC-MS analysis and in-silico approaches. J. Comput Biophys Chem. 2024; 23(3):299-320.
20. Samudra AG, Ramadhani N, Utami CD, Wirahmi N, Sani K F. Test of the antihyperglycemic effectiveness of brown seaweed (Sargassum hystrix) infusion on male mice using the glucose tolerance method. J. Ilmiah Manuntung. 2021; 7(2):248-253.
21. Alipour S, Kalari S, Morowvat MH, Sabahi Z, Dehshahri A. Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. Biomed Res Int. 2021; 2021(1):6635297.
22. Dwiyanti RD, Thuraidah A, Nurlailah N. Phytochemical analysis by LC-HRMS and antibacterial activity of the ethanol extract of Sengkuang (Dracontomelon dao (Blanco) Merr. & Rofe). Med Lab Technol. 2023; 9(1):93-100.
23. Kamal SE. Potential of antihypercholesterol extract of sempur fruit peel (Dillenia serrata) with in vivo study on male white rats (Rattus novergicus). Health Not. 2021; 5(9):317-321.
24. Sheriff OL, Olayemi O, Taofeeq AO, Riskat KE, Ojochebo DE, Ibukunoluwa AO. A new model for alloxan-induced diabetes mellitus in rats. J. Bangladesh Soc Physiol. 2019; 14(2):56-62.
25. Olorunsola EO, Davies KG, Essien EB, Alozie MF, Adedokun MO, Ahsan F. Orally administered Prosochit®-based nanoparticles of insulin ameliorates alloxan-induced diabetes in rats. Sci Pharm. 2022; 90(4):66-78.
26. Zhang X, Yan H, Ma L, Zhang H, Ren DF. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. J. Food Biochem. 2020; 44(9):e13363.
27. Almatroodi SA, Alnuqaydan AM, Babiker AY, Almogbel MA, Khan AA, Husain Rahmani A. 6-Gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics. 2021; 13(3):317-332.
28. Fan D, Li L, Li Z, Zhang Y, Ma X, Wu L, Zhang H, Guo F. Biosynthesis of selenium nanoparticles and their protective, antioxidative effects in streptozotocin induced diabetic rats. Sci Technol Adv Mater. 2020; 21(1):505-514.
29. Kant V, Jangir BL, Sharma M, Kumar V, Joshi VG. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol Immunotoxicol. 2021; 43(5):536-553.
30. Namdevrao AP, Shaikh MS, Rajjak PR, Balasaheb LM, Balasaheb SR, Ali SP, Hani U, Alhabardi SA, Siddique MUM. Formulation and optimization of selenium nanoparticles using Passiflora edulis leaf extract: Permeation and in vitro release kinetic study. Chem Biodivers. 2025; 22(4):e202500730.
31. Huong NT, Tung DK, Ky VH, Nam PH, Ngoc Anh NT. Synthesis of nano-selenium and its effects on germination and early seedling growth of four crop plants. AIP Adv. 2024; 14(2).
32. Salem SS, Badawy MSE, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH. Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life. 2022; 12(6):893-905.
33. Tripathi RM, Hameed P, Rao RP, Shrivastava N, Mittal J, Mohapatra S. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. Bionanoscience. 2020; 10(2):389-396.
34. Murru E, Manca C, Carta G, Banni S. Impact of dietary palmitic acid on lipid metabolism. Front Nutr. 2022; 9:1-9.
35. Unissa Syed R, Moni SS, Huwaimel B, Alobaida A, Abdulkareem Almarshdi A, S. Abouzied A, S.Abu Lila A, Abdallah MH, Banu H, Abdul Hadi M, E. El-Horany H, Ibrahim Abdelwahab S, Taha MME. Bioactive principles, anti-diabetic, and anti-ulcer activities of Ducrosia anethifolia Boiss leaves from the Hail region, Saudi Arabia. Arab J. Chem. 2022; 15(12):104308.
36. Chen B, Li T, Wu Y, Song L, Wang Y, Bian Y, Qiu Y, Yang Z. Lipotoxicity: A new perspective in type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2025; 18:1223-1237.
37. Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022; 7(1):216-241.
38. Apiri BO, Makonde HM, Ngugi MP, Ogare J, Kibiti CM. Medicinal potential of Tragia involucrata Linn for management of diabetes mellitus in Kenya, a review. MJTUM. 2024; 3(2):42-56.
39. Luo Y, Zeng Y, Peng J, Zhang K, Wang L, Feng T, Nhamdriel T, Fan G. Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed Pharmacother. 2023; 165:115274-115287.
40. Blokhin ME, Kuranov SO, Khvostov MV, Fomenko VV, Luzina OA, Zhukova NA, Elhajjar C, Tolstikova TG, Salakhutdinov NF. Terpene-containing analogues of glitazars as potential therapeutic agents for metabolic syndrome. Curr Issues Mol Biol. 2023; 45(3):2230-2247.
41. Wechakorn K, Payaka A, Masoongnoen J, Wattanalaorsomboon S, Sansenya S. Inhibition potential of -hexadecanoic and oleic acids from edible insects against -glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: and studies. J. Sci Food Agric. 2025; 105(2):3701-3711.
42. Klomsakul P, Chalopagorn P. In vitro α-amylase and α-glucosidase inhibitory potential of green banana powder extracts. Sci World J. 2024; 2024(1):5515855-5515863.
43. Kothapalli L, Singh N, Thomas A, Ghadge Y. Selenium nanoparticles: Cut-edge therapeutic entity. NanoSci Nanotech Asia. 2024; 14(6):1-13.
44. Mohamed AA-R, Khater SI, Hamed Arisha A, Metwally MMM, Mostafa-Hedeab G, El-Shetry ES. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene. 2021; 768:145288.
45. Tiwari OS, Aizen R, Meli M, Colombo G, Shimon LJW, Tal N, Gazit E. Entropically-driven co-assembly of i-histidine and i-phenylalanine to form supramolecular materials. ACS Nano. 2023; 17(4):3506-3517.
46. Xu L, Cheng F, Bu D, Li X. The effects of prolonged basic amino acid exposures on mitochondrial enzyme gene expressions, metabolic profiling and insulin secretions and syntheses in rat INS-1 β-cells. Nutrients. 2023; 15(18): 4026-4041.
47. Zadeh Modarres S, Asemi Z, Heidar Z. The effects of selenium supplementation on glycemic control, serum lipoproteins and biomarkers of oxidative stress in infertile women diagnosed with polycystic ovary syndrome undergoing in vitro fertilization: A randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2022; 51:92-96.
48. Xu X, Qi P, Zhang Y, Sun H, Yan Y, Sun W, Liu S. Effect of selenium treatment on central insulin sensitivity: A proteomic analysis in β-amyloid precursor protein/presenilin-1 transgenic mice. Front Mol Neurosci. 2022; 15:1-15.
49. Phang JM. The regulatory mechanisms of proline and hydroxyproline metabolism: Recent advances in perspective. Front Oncol. 2023; 12:1118675.
50. Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol. 2021; 30(1):38-49.
51. Mphahlele MJ, Nkoana JK, Gildenhuys S, Elhenawy AA. Structure and biological property studies of the fluorinated sulfonic esters derived from 2-hydroxy-4-(hydroxy/methoxy)acetophenone as inhibitors of biochemical targets linked to type 2 diabetes mellitus. J. Fluor Chem. 2024; 273:110233-110247.
52. Citarella A, Cavinato M, Rosini E, Shehi H, Ballabio F, Camilloni C, Fasano V, Silvani A, Passarella D, Pollegioni L, Nardini M. Nicotinic acid derivatives as novel noncompetitive α-amylase and α-glucosidase inhibitors for type 2 diabetes treatment. ACS Med Chem Lett. 2024; 15(9):1474-1481.
53. He M, Li Z, Tung VSK, Pan M, Han X, Evgrafov O, Jiang X-C. Inhibiting phosphatidylcholine remodeling in adipose tissue increases insulin sensitivity. Diabetes. 2023; 72(11):1547-1559.
54. Al-Sulaiti H, Anwardeen N, Bashraheel SS, Naja K, Elrayess MA. Alterations in choline metabolism in non-obese individuals with insulin resistance and type 2 diabetes mellitus. Metabolites. 2024; 14(8):457-469.
55. Nag OK, Naciri J, Lee K, Oh E, Almeida B, Delehanty JB. Liquid crystal nanoparticle conjugates for scavenging reactive oxygen species in live cells. Pharmaceuticals. 2022; 15(5):604-618.
56. Tomal A, Szłapka-Kosarzewska J, Mironiuk M, Michalak I, Marycz K. Arthrospira platensis enriched with Cr (III), Mg (II), and Mn (II) ions improves insulin sensitivity and reduces systemic inflammation in equine metabolic affected horses. Front Endocrinol. 2024; 15:1382844.
57. Hannan J, Ansari P, Azam S, Flatt PR, Wahab YHA. Effects of Spirulina platensis on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. British J. Nutr. 2020; 124(10):1021-1034.
58. Karas RA, Alexeree S, Elzohery N, Abdel-Hafez SH, Attia YA. Antidiabetic potential of Selenium nanoparticles and plasma-rich platelets in diabetic mice. Appl Biol Chem. 2024; 67(1):62-79.
59. Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CECC, Osawe SO. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn Schmiedebergs Arch Pharmacol. 2021; 394(4):591-602.
60. Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai X-Q, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li W-h, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun. 2024; 15(1):334-349.
61. Wang X, Wang J, Xiu W, Yang M, Yu S, Ma Y. Selenium nanoparticles stabilized by sweet corncob polysaccharide inhibit hypoglycemia in vitro and alleviate symptoms in type 2 diabetes mice. J. Funct Foods. 2024; 112:105920.
62. Sen DB, Balaraman R, Sen AK, Zanwar AS, Greeshma KP, Maheshwari RA. Anti-diabetic activity of herbal remedies. J. Nat Med. 2023; 23(2):373-381.
63. Elsawy H, Famurewa AC, Sedky A. Resveratrol mitigates diabetic testicular dysfunction, endocrine deficits, and insulin resistance via suppression of sperm-endocrine aberrations and oxidative inflammation in rats. Andrologia. 2023; 2023(1):6385767.
64. Barkabi-Zanjani S, Ghorbanzadeh V, Aslani M, Ghalibafsabbaghi A, Chodari L. Diabetes mellitus and the impairment of male reproductive function: Possible signaling pathways. Diabetes Metab Syndr: Clin Res Rev. 2020; 14(5):1307-1314.
65. Mazo VK, Biryulina NA, Sidorova YS. Arthrospira platensis: antioxidant, hypoglycemic and hypolipidemic effects in vitro and in vivo (brief review). Vopr Pitan. 2022; 91(4):19-25.
66. Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia. 2022; 54(8):e14456.
67. Budagova S, Nadvodnyk G, Belskaia P, Obukhova A, Lebedev I, Osmanov R, Dzhumaev G, Agarzaev M. Toxicity assessment of the selenium nanoparticles in vitro. J. Adv Pharm Educ Res. 2023; 13(3):39-45.
68. Shareef BQ, Al Qadhi HI, Shayma'a AJ. Antioxidant effects of selenium nanoparticles prepared from eruca sativa extract on ketoconazole–induced testicular oxidative damage in male rats. J. Fac Med Baghdad. 2024; 66(1):58-66.
69. Al-Ghezi M, Almilly RF, Ali WK. Diabetic foot ulcers healing promoted by novel glibenclamide-loaded micelle wound dressing. J. Pharm Res Int. 2022; 34:36-49.
70. Ferdowsi S, Abdolmaleki A, Asadi A, Zahri S. Glibenclamide promoted functional recovery following sciatic nerve injury in male Wistar rats. Fundam Clin Pharmacol. 2022; 36(6):966-975.
71. Bhardwaj M, Kumar V, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and sprague dawley rats. Inflammation. 2020; 43:937-950.
72. Okur ME, Karadağ AE, Özhan Y, Sipahi H, Ayla Ş, Daylan B, Kültür Ş, Demirci B, Demirci F. Anti-inflammatory, analgesic and in vivo-in vitro wound healing potential of the Phlomis rigida Labill. extract. J. Ethnopharmacol. 2021; 266:113408.
73. DiNatale L, Idkowiak-Baldys J, Zhuang Y, Gonzalez A, Stephens TJ, Jiang LI, Li W, Basson R, Bayat A. Novel rotational combination regimen of skin topicals improves facial photoaging: Efficacy demonstrated in double-blinded clinical trials and laboratory validation. Front Med. 2021; 8:724344-772462.
74. Hsieh C-C, Yi T-K, Kao Y-F, Lin S-P, Tu M-C, Chou Y-C, Lu J-J, Chai H-J, Cheng K-C. Comparative efficacy of Botryocladia leptopoda extracts in scar inhibition and skin
regeneration: A study on UV protection, collagen synthesis, and fibroblast proliferation. Molecules. 2024; 29(23):5688-5702.
75. Hakim RF, Idroes R, Hanafiah OA, Ginting B, Kemala P, Fakhrurrazi F, Putra NI, Shafira GA, Romadhoni Y, Destiana K, Muslem M. Characterization of red algae (Gracilaria verrucosa) on potential application for topical treatment of oral mucosa wounds in Rattus norvegicus. Narra J. 2023; 3(3):422-435.
76. Park J, Lee H, Choi S, Pandey LK, Depuydt S, De Saeger J, Park J-T, Han T. Extracts of red seaweed, Pyropia yezoensis, inhibit melanogenesis but stimulate collagen synthesis. J. Appl Phycol. 2021; 33(1):653-662.
77. Gangadevi V, Thatikonda S, Pooladanda V, Devabattula G, Godugu C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J. Nanobiotechnology. 2021; 19:1-19.
78. Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr. 2023; 10:1183487.
79. Yao K, Peng Y, Tang Q, Liu K, Peng C. Human serum albumin/selenium complex nanoparticles protect the skin from photoaging injury. Int J. Nanomedicine. 2024; 6(19):9161-9174.
80. Spínola MP, Mendes AR, Prates JA. Chemical composition, bioactivities, and applications of Spirulina (Limnospira platensis) in food, feed, and medicine. Foods. 2024; 13(22):3656-3763.
81. Al-Yahyaey F, Shaat I, Hall E, Bush RD. Effect of Spirulina platensis supplementation on growth, performance and body conformation of two Omani goat breeds. Anim Prod Sci. 2023; 63(2):133-141.
82. El-Shall NA, Jiang S, Farag MR, Azzam M, Al-Abdullatif AA, Alhotan R, Dhama K, Hassan F-u, Alagawany M. Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front Immunol. 2023; 14:1072787-1072799.
83. Chen Y, Zhu F, Ou J, Chen J, Liu X, Li R, Wang Z, Cheong K-L, Zhong S. Mitochondrion-targeted selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides increase reactive oxygen species-mediated antitumour activity. Int J. Biol Macromol. 2024; 281:136545.
84. Kondaparthi P, Deore M, Naqvi S, Flora SJS. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and bulk selenium in mice. Environ Sci Pollut Res. 2021; 28(38):53034-53044.
85. Alfaqeeh M, Khairinisa MA, Permana H. Pharmacokinetics and pharmacodynamics of glyburide: insights for optimizing treatment in type 2 diabetes. Indones J. Clin Pharm, IJCP. 2024; 13(2):107-119
86. Mao Z, Liu W, Zou R, Sun L, Huang S, Wu L, Chen L, Wu J, Lu S, Song Z, Li X, Huang Y, Rao Y, Huang Y-Y, Li B, Hu Z, Li J. Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification. Sig Transduct Target Ther. 2025; 10(1):67-82.


