Recent Strategies for Enhancing the Solubility and Dissolution of Poorly Water-Soluble Curcumin for Therapeutic Purposes and Beyond

Main Article Content

Phuoc-Quyen Le
Minh-Thy Nguyen
Quoc-Viet Le
Hien Van Nguyen

Abstract

Curcumin, a natural compound with significant therapeutic potential, has been the subject of extensive research due to its anti-inflammatory, antioxidant, and anticancer properties. However, its clinical application has been hindered by poor aqueous solubility and low bioavailability, presenting significant challenges for effective drug delivery. This review provides a comprehensive overview of recent strategies aimed at improving the solubility and dissolution of poorly water-soluble curcumin. Key approaches discussed include conventional solubilization methods, such as particle size reduction, solid dispersions, co-crystals, complexation, and deep eutectic solvents, alongside more advanced delivery systems, including nanoparticles and bioconjugates. Each approach is critically evaluated in terms of its solubilizing mechanism, advantages, limitations, and applicability to large-scale production. The review also addresses challenges and future directions that offer promises for overcoming existing barriers, paving the way for the development of efficient, biocompatible, and sustainable curcumin-based therapeutics.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Recent Strategies for Enhancing the Solubility and Dissolution of Poorly Water-Soluble Curcumin for Therapeutic Purposes and Beyond. (2025). Tropical Journal of Natural Product Research , 9(7), 3413 – 3429. https://doi.org/10.26538/tjnpr/v9i7.70

References

1. Thakur L, Ghodasra U, Patel N, Dabhi M. Novel approaches for stability improvement in natural medicines. Phcog Rev. 2011;5(9):48-54. DOI: https://doi.org/10.4103/0973-7847.79099

2. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1a):363-398.

3. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol. 2020;11:01021. DOI: https://doi.org/10.3389/fphar.2020.01021

4. Manolova Y, Deneva V, Antonov L, Drakalska E, Momekova D, Lambov N. The effect of the water on the curcumin tautomerism: A quantitative approach. Spectroc Acta Pt A-Molec Biomolec Spectr. 2014;132:815-820. DOI: https://doi.org/10.1016/j.saa.2014.05.096

5. Jovanovic SV, Steenken S, Boone CW, Simic MG. H-Atom Transfer Is A Preferred Antioxidant Mechanism of Curcumin. J Am Chem Soc. 1999;121(41):9677-9681. DOI: https://doi.org/10.1021/ja991446m

6. Pandey KU, Joshi A, Dalvi SV. Evaluating the efficacy of different curcumin polymorphs in transdermal drug delivery. J Pharm Investig. 2021;51(1):75-84. DOI: https://doi.org/10.1007/s40005-020-00496-7

7. Kharat M, McClements DJ. Recent advances in colloidal delivery systems for nutraceuticals: A case study – Delivery by Design of curcumin. J Colloid Interface Sci. 2019;557:506-518. DOI: https://doi.org/10.1016/j.jcis.2019.09.045

8. Bernabé-Pineda M, Ramı́rez-Silva MaT, Romero-Romo M, González-Vergara E, Rojas-Hernández A. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. Spectroc Acta Pt A-Molec Biomolec Spectr. 2004;60(5):1091-1097. DOI: https://doi.org/10.1016/S1386-1425(03)00342-1

9. Kumavat S, Chaudhari Y, Borole P, Mishra P, Shenghani K, Duvvuri P. Degradation studies of curcumin. Int J Pharm Sci Rev Res. 2013;3:50-55.

10. Zhao Q, Kong D-X, Zhang H-Y. Excited-State pKa Values of Curcumin. Nat Prod Commun. 2008;3:229-232. DOI: https://doi.org/10.1177/1934578X0800300225

11. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the Solubility and Pharmacological Efficacy of Curcumin by Heat Treatment. Assay Drug Dev Technol. 2007;5(4):567-576. DOI: https://doi.org/10.1089/adt.2007.064

12. Chandrashekar N, Rani RS. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J Pharm Sci. 2008;70(1):94. DOI: https://doi.org/10.4103/0250-474X.40340

13. Wang S, Zhao P, Zhang Y, Zhu L, Zhu J, Luo Y, Li Q. The Therapeutic Effects of Curcumin in Early Septic Acute Kidney Injury: An Experimental Study. Drug Des Devel Ther. 2021;15:4243-4255. DOI: https://doi.org/10.2147/DDDT.S332623

14. Barzegar A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 2012;135(3):1369-1376. DOI: https://doi.org/10.1016/j.foodchem.2012.05.070

15. Ak T, Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chem-Biol Interact. 2008;174(1):27-37. DOI: https://doi.org/10.1016/j.cbi.2008.05.003

16. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angewandte Chemie (International ed in English). 2012;51(22):5308-5332. DOI: https://doi.org/10.1002/anie.201107724

17. Ross KR, Corey DA, Dunn JM, Kelley TJ. SMAD3 expression is regulated by mitogen-activated protein kinase kinase-1 in epithelial and smooth muscle cells. Cell Signal. 2007;19(5):923-931. DOI: https://doi.org/10.1016/j.cellsig.2006.11.008

18. Gan Y, Zheng S, Baak JPA, Zhao S, Zheng Y, Luo N, Liao W, Fu C. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis. Acta Pharm Sin B. 2015;5(6):590-595. DOI: https://doi.org/10.1016/j.apsb.2015.09.005

19. Machova Urdzikova L, Karova K, Ruzicka J, Kloudova A, Shannon C, Dubisova J, Murali R, Kubinova S, Sykova E, Jhanwar-Uniyal M, Jendelova P. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int J Mol Sci. 2015;17(1):49. DOI: https://doi.org/10.3390/ijms17010049

20. Rai D, Singh Jay K, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J. 2008;410(1):147-155. DOI: https://doi.org/10.1042/BJ20070891

21. Mathew D, Hsu W-L. Antiviral potential of curcumin. J Funct Foods. 2018;40:692-699. DOI: https://doi.org/10.1016/j.jff.2017.12.017

22. Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol. 2019;124:182-191. DOI: https://doi.org/10.1016/j.fct.2018.12.002

23. Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Boston, MA: Springer US; 2007. 359-377 p. DOI: https://doi.org/10.1007/978-0-387-46401-5_16

24. Huang H-C, Xu K, Jiang Z-F. Curcumin-Mediated Neuroprotection Against Amyloid-β-Induced Mitochondrial Dysfunction Involves the Inhibition of GSK-3β. J Alzheimer's Dis. 2012;32:981-996. DOI: https://doi.org/10.3233/JAD-2012-120688

25. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1-2):127-135. DOI: https://doi.org/10.1016/S0378-5173(02)00323-X

26. Klickovic U, Doberer D, Gouya G, Aschauer S, Weisshaar S, Storka A, Bilban M, Wolzt M. Human pharmacokinetics of high dose oral curcumin and its effect on heme oxygenase-1 expression in healthy male subjects. Biomed Res Int. 2014;2014:458592. DOI: https://doi.org/10.1155/2014/458592

27. Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin uptake and metabolism. Biofactors. 2013;39(1):14-20. DOI: https://doi.org/10.1002/biof.1042

28. Asai A, Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci. 2000;67(23):2785-2793. DOI: https://doi.org/10.1016/S0024-3205(00)00868-7

29. Liu Z, Smart JD, Pannala AS. Recent developments in formulation design for improving oral bioavailability of curcumin: A review. J Drug Deliv Sci Technol. 2020;60:102082. DOI: https://doi.org/10.1016/j.jddst.2020.102082

30. Sabet S, Rashidinejad A, Melton LD, McGillivray DJ. Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol. 2021;110:253-266. DOI: https://doi.org/10.1016/j.tifs.2021.02.006

31. Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359-380. DOI: https://doi.org/10.1016/j.jconrel.2019.10.053

32. Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol. 2023;82:104326. DOI: https://doi.org/10.1016/j.jddst.2023.104326

33. Ipar VS, Dsouza A, Devarajan PV. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur J Drug Metab Pharmacokinet. 2019;44(4):459-480. DOI: https://doi.org/10.1007/s13318-019-00545-z

34. Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Int Food Res. 2020;132:109035. DOI: https://doi.org/10.1016/j.foodres.2020.109035

35. Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum A-L, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol. 2022;78:103982. DOI: https://doi.org/10.1016/j.jddst.2022.103982

36. Askarizadeh A, Barreto GE, Henney NC, Majeed M, Sahebkar A. Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm. 2020;585:119476. DOI: https://doi.org/10.1016/j.ijpharm.2020.119476

37. Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev. 2021;69:101364. DOI: https://doi.org/10.1016/j.arr.2021.101364

38. Chen T, Zhang M, Bhandari B, Yang Z. Micronization and nanosizing of particles for an enhanced quality of food: A review. . Crit Rev Food Sci Nutr. 2018;58(6):993-1001. DOI: https://doi.org/10.1080/10408398.2016.1236238

39. Kumar R, Thakur AK, Chaudhari P, Banerjee N. Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability. J Pharm Innov. 2022;17(2):333-352. DOI: https://doi.org/10.1007/s12247-020-09530-5

40. Dhiman A, Prabhakar PK. Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J Food Eng. 2021;292:110248. DOI: https://doi.org/10.1016/j.jfoodeng.2020.110248

41. Al-Akayleh F, Al-Naji I, Adwan S, Al-Remawi dm, Shubair M. Enhancement of Curcumin Solubility Using a Novel Solubilizing Polymer Soluplus®. J Pharm Innov. 2020;17:1-13. DOI: https://doi.org/10.1007/s12247-020-09500-x

42. He Y, Liang Y, Mak JCW, Liao Y, Li T, Yan R, Li H-F, Zheng Y. Size effect of curcumin nanocrystals on dissolution, airway mucosa penetration, lung tissue distribution and absorption by pulmonary delivery. Colloids Surf B Biointerfaces. 2020;186:110703. DOI: https://doi.org/10.1016/j.colsurfb.2019.110703

43. Chiou A, Yeh M-K, Chen C-Y, Wang D-P. Micronization of meloxicam using a supercritical fluids process. J Supercrit Fluids. 2007;42:120-128. DOI: https://doi.org/10.1016/j.supflu.2006.12.024

44. Fahim TK, Zaidul ISM, Abu Bakar MR, Salim UM, Awang MB, Sahena F, Jalal KCA, Sharif KM, Sohrab MH. Particle formation and micronization using non-conventional techniques- review. Chem Eng Process: Process Intensif. 2014;86:47-52. DOI: https://doi.org/10.1016/j.cep.2014.10.009

45. Zhao Z, Xie M, Li Y, Chen A, Li G, Zhang J, Hu H, Wang X, Li S. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. Int J Nanomed. 2015;10:3171-3181. DOI: https://doi.org/10.2147/IJN.S80434

46. Xue B, Huang J, Zhang H, Li B, Xu M, Zhang Y, Xie M, Li X. Micronized curcumin fabricated by supercritical CO2 to improve antibacterial activity against Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2020;48(1):1135-1143. DOI: https://doi.org/10.1080/21691401.2020.1815755

47. Matos RL, Lu T, Leeke G, Prosapio V, McConville C, Ingram A. Single-step coprecipitation and coating to prepare curcumin formulations by supercritical fluid technology. J Supercrit Fluids. 2020;159:104758. DOI: https://doi.org/10.1016/j.supflu.2020.104758

48. Nguyen DN, Clasen C, Van den Mooter G. Pharmaceutical Applications of Electrospraying. J Pharm Sci. 2016;105(9):2601-2620. DOI: https://doi.org/10.1016/j.xphs.2016.04.024

49. Chhouk K, Diono W, Kanda H, Goto M. Micronization for Enhancement of Curcumin Dissolution via Electrospraying Technique. ChemEngineering. 2018;2(4):60. DOI: https://doi.org/10.3390/chemengineering2040060

50. Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics. 2019;11(3):132. DOI: https://doi.org/10.3390/pharmaceutics11030132

51. Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505-2536. DOI: https://doi.org/10.1016/j.apsb.2021.05.014

52. Tran PHL, Lee B-J, Tran TTD. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Eur J Pharm Biopharm. 2021;164:13-19. DOI: https://doi.org/10.1016/j.ejpb.2021.04.009

53. Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85-101. DOI: https://doi.org/10.1016/j.addr.2016.01.012

54. Mann AKP, Schenck L, Koynov A, Rumondor ACF, Jin X, Marota M, Dalton C. Producing Amorphous Solid Dispersions via Co-Precipitation and Spray Drying: Impact to Physicochemical and Biopharmaceutical Properties. J Pharm Sci. 2018;107(1):183-191. DOI: https://doi.org/10.1016/j.xphs.2017.07.001

55. Ghaderi F, Fathyounes S, Emami S. In Situ Hydrogel-Forming Powders Containing Eutectic Mixture of Curcumin-Arginine as a Multi-Drug Delivery System for Wound Healing Applications. Pharm Sci. 2024;30(4):469-477. DOI: https://doi.org/10.34172/PS.2024.21

56. Ahlawat S, Budhwar V, Choudhary M, Kumari S. Concurrent Enhancement of Curcumin's Stability and Dissolution by the Preparation of its Eutectic Mixtures. Int Res J Multidiscip Scope. 2024;5(2):387-398. DOI: https://doi.org/10.47857/irjms.2024.v05i02.0502

57. Bartos C, Motzwickler-Németh A, Kovács D, Burián K, Ambrus R. Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics. 2024;16(12):1512. DOI: https://doi.org/10.3390/pharmaceutics16121512

58. Patil U, Rawal S, Pantwalawalkar J, Nangare S, Dagade D, Patil P, Jadhav NR. Development of amino acid salt-based curcumin@lysine acetate co-amorphous system using liquid-assisted grinding for improved solubility and dissolution. Thai J Pharm Sci. 2023;46(6):711-719. DOI: https://doi.org/10.56808/3027-7922.2657

59. Czajkowska-Kośnik A, Misztalewska-Turkowicz I, Wilczewska AZ, Basa A, Winnicka K. Solid Dispersions Obtained by Ball Milling as Delivery Platform of Etodolac, a Model Poorly Soluble Drug. Materials. 2024;17(16):3923. DOI: https://doi.org/10.3390/ma17163923

60. Zhang Q, Suntsova L, Chistyachenko YS, Evseenko V, Khvostov MV, Polyakov NE, Dushkin AV, Su W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int J Biol Macromol. 2019;128:158-166. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.079

61. Saleem IY, Smyth HD. Micronization of a soft material: air-jet and micro-ball milling. AAPS PharmSciTech. 2010;11(4):1642-1649. DOI: https://doi.org/10.1208/s12249-010-9542-5

62. Kamal G, Abdullah S, Basingab F, Bani-Jaber A, Hamdan II. Curcumin-betaine solid dispersion for enhancing curcumin dissolution and potentiating pharmacological synergism in gastric cancer cells. J Drug Deliv Sci Technol. 2023;79:103951. DOI: https://doi.org/10.1016/j.jddst.2022.103951

63. Nguyen TN-G, Tran PH-L, Van Vo T, Van Tran T, Tran TT-D, editors. Dissolution Enhancement of Curcumin by Solid Dispersion with Polyethylene Glycol 6000 and Hydroxypropyl Methylcellulose. 5th International Conference on Biomedical Engineering in Vietnam; 2015; Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-11776-8_72

64. Zhang J, Shi X, Tao W. Curcumin amorphous solid dispersions benefit from hydroxypropyl methylcellulose E50 to perform enhanced anti-inflammatory effects. Int J Biol Macromol. 2023;252:126507. DOI: https://doi.org/10.1016/j.ijbiomac.2023.126507

65. Pan-On S, Tiyaboonchai W. Development, characterization and Caco-2 cells absorption of curcumin solid dispersion for oral administration. J Drug Deliv Sci Technol. 2023;86:104574. DOI: https://doi.org/10.1016/j.jddst.2023.104574

66. Yu JY, Roh S, Park HJ. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll. 2021;111:106390. DOI: https://doi.org/10.1016/j.foodhyd.2020.106390

67. Yu JY, Kim JA, Joung HJ, Ko JA, Park HJ. Preparation and characterization of curcumin solid dispersion using HPMC. J Food Sci. 2020;85(11):3866-3873. DOI: https://doi.org/10.1111/1750-3841.15489

68. Mohamed JMM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Stoichiometrically Governed Curcumin Solid Dispersion and Its Cytotoxic Evaluation on Colorectal Adenocarcinoma Cells. Drug Des Devel Ther. 2020;14:4639-4658. DOI: https://doi.org/10.2147/DDDT.S273322

69. Wang S, Xie Y, Su H, Luo Y, Wang M, Li T, Fu Y. Delivery of curcumin in a carboxymethyl cellulose and hydroxypropyl methyl cellulose carrier: Physicochemical properties and biological activity. Int J Biol Macromol. 2023;239:124203. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124203

70. Xi Z, Fei Y, Wang Y, Lin Q, Ke Q, Feng G, Xu L. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J Drug Deliv Sci Technol. 2023;83:104351. DOI: https://doi.org/10.1016/j.jddst.2023.104351

71. Deng Y, Liu S, Jiang Y, Martins ICB, Rades T. Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs. Pharmaceutics. 2023;15(9):2174. DOI: https://doi.org/10.3390/pharmaceutics15092174

72. Lara-Ochoa F, Espinosa-Pérez G. Cocrystals definitions. Supramol Chem. 2007;19(8):553-557. DOI: https://doi.org/10.1080/10610270701501652

73. Fakhrulddin A, Alkotaji M, Abachi F. Co-Crystals For Improving Solubility And Bioavailability Of Pharmaceutical Products. Egypt J Chem. 2021;65(1):81-89.

74. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-2564. DOI: https://doi.org/10.1016/j.apsb.2021.03.030

75. Manin AN, Voronin AP, Drozd KV, Manin NG, Bauer-Brandl A, Perlovich GL. Cocrystal screening of hydroxybenzamides with benzoic acid derivatives: A comparative study of thermal and solution-based methods. Eur J Pharm Sci. 2014;65:56-64. DOI: https://doi.org/10.1016/j.ejps.2014.09.003

76. Narala S, Nyavanandi D, Alzahrani A, Bandari S, Zhang F, Repka MA. Creation of Hydrochlorothiazide Pharmaceutical Cocrystals Via Hot-Melt Extrusion for Enhanced Solubility and Permeability. AAPS PharmSciTech. 2022;23(1):56. DOI: https://doi.org/10.1208/s12249-021-02202-8

77. Zhang S, Rasmuson Å. The theophylline-oxalic acid co-crystal system: Solid phases, thermodynamics and crystallisation. CrystEngComm. 2012;14:4644-4655. DOI: https://doi.org/10.1039/c2ce25299f

78. Hsu P-C, Lin H-L, Wang S-L, Lin S-Y. Solid-state thermal behavior and stability studies of theophylline–citric acid cocrystals prepared by neat cogrinding or thermal treatment. J Solid State Chem. 2012;192:238-245. DOI: https://doi.org/10.1016/j.jssc.2012.04.010

79. Yousef MAE, Vangala VR. Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Cryst Growth Des. 2019;19(12):7420-7438. DOI: https://doi.org/10.1021/acs.cgd.8b01898

80. Pantwalawalkar J, More H, Bhange D, Patil U, Jadhav N. Novel curcumin ascorbic acid cocrystal for improved solubility. J Drug Deliv Sci Technol. 2021;61:102233. DOI: https://doi.org/10.1016/j.jddst.2020.102233

81. Shen R, Zhang J, Wang X. Cocrystal of curcumin with 4,4′-bipyridine toward improved dissolution: Design, structure analysis, and solid-state characterization. J Mol Struct. 2023;1284:135348. DOI: https://doi.org/10.1016/j.molstruc.2023.135348

82. Paulazzi AR, Alves BO, Zilli GAL, Dos Santos AE, Petry F, Soares KD, Danielli LJ, Pedroso J, Apel MA, Aguiar GPS, Siebel AM, Oliveira JV, Müller LG. Curcumin and n-acetylcysteine cocrystal produced with supercritical solvent: characterization, solubility, and preclinical evaluation of antinociceptive and anti-inflammatory activities. Inflammopharmacology. 2022;30(1):327-341. DOI: https://doi.org/10.1007/s10787-021-00917-5

83. Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun. 2016;52(54):8342-8360. DOI: https://doi.org/10.1039/C6CC02943D

84. Dal Magro C, dos Santos AE, Ribas MM, Aguiar GPS, Volfe CRB, Lopes MLLC, Siebel AM, Müller LG, Bortoluzzi AJ, Lanza M, Oliveira JV. Production of curcumin-resveratrol cocrystal using cocrystallization with supercritical solvent. J Supercrit Fluids. 2021;171:105190. DOI: https://doi.org/10.1016/j.supflu.2021.105190

85. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21(2):356-362. DOI: https://doi.org/10.1016/j.drudis.2015.11.017

86. Aman A, Ali S, Mahalapbutr P, Krusong K, Wolschann P, Rungrotmongkol T. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: in silico and in vitro studies. RSC Adv. 2023;13(39):27244-27254. DOI: https://doi.org/10.1039/D3RA03867J

87. Fenyvesi F, Nguyen TLP, Haimhoffer Á, Rusznyák Á, Vasvári G, Bácskay I, Vecsernyés M, Ignat S-R, Dinescu S, Costache M, Ciceu A, Hermenean A, Váradi J. Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. Materials. 2020;13(16):3618. DOI: https://doi.org/10.3390/ma13163618

88. Garg A, Ahmad J, Hassan MZ. Inclusion complex of thymol and hydroxypropyl-β-cyclodextrin (HP-β-CD) in polymeric hydrogel for topical application: Physicochemical characterization, molecular docking, and stability evaluation. J Drug Deliv Sci Technol. 2021;64:102609. DOI: https://doi.org/10.1016/j.jddst.2021.102609

89. Erdoğar N, Nemutlu E, İskit AB, Kara SC, Teksin ZŞ, Bilensoy E. Improved oral bioavailability of anticancer drug tamoxifen through complexation with water soluble cyclodextrins: in vitro and in vivo evaluation. J Incl Phenom Macrocycl Chem. 2020;96(1):81-91. DOI: https://doi.org/10.1007/s10847-019-00952-4

90. Lin Q, Wu D, Singh H, Ye A. Improving solubility and stability of β-carotene by microencapsulation in soluble complexes formed with whey protein and OSA-modified starch. Food Chem. 2021;352:129267. DOI: https://doi.org/10.1016/j.foodchem.2021.129267

91. Rajamohan R, Kamaraj E, Muthuraja P, Murugavel K, Govindasamy C, Prabakaran DS, Malik T, Lee YR. Enhancing ketoprofen's solubility and anti-inflammatory efficacy with safe methyl-β-cyclodextrin complexation. Sci Rep. 2024;14(1):21516. DOI: https://doi.org/10.1038/s41598-024-71615-9

92. Wang X, Parvathaneni V, Shukla SK, Kanabar DD, Muth A, Gupta V. Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol—Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech. 2020;21(5):183. DOI: https://doi.org/10.1208/s12249-020-01724-x

93. Maria DN, Mishra SR, Wang L, Abd-Elgawad AH, Soliman OA, El-Dahan MS, Jablonski MM. Water-soluble Complex of Curcumin with Cyclodextrins: Enhanced Physical Properties For Ocular Drug Delivery. Curr Drug Deliv. 2017;14(6):875-886. DOI: https://doi.org/10.2174/1567201813666160808111209

94. Li N, Wang N, Wu T, Qiu C, Wang X, Jiang S, Zhang Z, Liu T, Wei C, Wang T. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm. 2018;44(12):1966-1974. DOI: https://doi.org/10.1080/03639045.2018.1505904

95. Aiassa V, Garnero C, Zoppi A, Longhi MR. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals (Basel). 2023;16(8):1074. DOI: https://doi.org/10.3390/ph16081074

96. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules. 2018;23(5):1161. DOI: https://doi.org/10.3390/molecules23051161

97. Szente L, Singhal A, Domokos A, Song B. Cyclodextrins: Assessing the Impact of Cavity Size, Occupancy, and Substitutions on Cytotoxicity and Cholesterol Homeostasis. Molecules. 2018;23(5):1228. DOI: https://doi.org/10.3390/molecules23051228

98. Yadav VR, Suresh S, Devi K, Yadav S. Effect of Cyclodextrin Complexation of Curcumin on its Solubility and Antiangiogenic and Anti-inflammatory Activity in Rat Colitis Model. AAPS PharmSciTech. 2009;10(3):752-762. DOI: https://doi.org/10.1208/s12249-009-9264-8

99. Shityakov S, Salmas RE, Durdagi S, Roewer N, Förster C, Broscheit J. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin. J Mol Struct. 2017;1134:91-98. DOI: https://doi.org/10.1016/j.molstruc.2016.12.028

100. Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201-217. DOI: https://doi.org/10.1002/ddr.21452

101. Cabrera-Quiñones N, López‐Méndez L, Guadarrama P. Inclusion and Non‐Inclusion Complexes between Curcumin and β‐Cyclodextrin with High‐Curcumin Loading and Enhanced Aqueous Solubility Obtained by Mechanochemistry. ChemistrySelect. 2023;8(45):e202303254. DOI: https://doi.org/10.1002/slct.202303254

102. Zeng Y, Lv Y, Hu M, Guo F, Zhang C. Curcumin-loaded hydroxypropyl-β-cyclodextrin inclusion complex with enhanced dissolution and oral bioavailability for epilepsy treatment. Xenobiotica. 2022;52(7):718-728. DOI: https://doi.org/10.1080/00498254.2022.2136044

103. Ren L, Yang X, Guo W, Wang J, Chen G. Inclusion Complex of Docetaxel with Sulfobutyl Ether β-Cyclodextrin: Preparation, In Vitro Cytotoxicity and In Vivo Safety. Polymers (Basel). 2020;12(10):2336. DOI: https://doi.org/10.3390/polym12102336

104. Sravani AB, Shenoy KM, Chandrika B, Kumar BH, Kini SG, Pai KS, Lewis SA. Curcumin-sulfobutyl-ether beta cyclodextrin inclusion complex: preparation, spectral characterization, molecular modeling, and antimicrobial activity. J Biomol Struct Dyn. 2023;42(19):9977-9992. DOI: https://doi.org/10.1080/07391102.2023.2254409

105. Lang W, Tagami T, Kumagai Y, Tanaka S, Kang HJ, Okuyama M, Saburi W, Mori H, Hira T, Lee C, Isono T, Satoh T, Hara H, Kurokawa T, Sakairi N, Yuguchi Y, Kimura A. Tunable structure of chimeric isomaltomegalosaccharides with double α-(1 → 4)-glucosyl chains enhances the solubility of water-insoluble bioactive compounds. Carbohydr Polym. 2023;319:121185. DOI: https://doi.org/10.1016/j.carbpol.2023.121185

106. Mohammadian M, Salami M, Momen S, Alavi F, Emam-Djomeh Z, Moosavi-Movahedi AA. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 2019;87:902-914. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.001

107. Ji F, Xu J, Liu H, Shao D, Wang C, Zhao Y, Luo S, Zhong X, Zheng Z. Improved water solubility, antioxidant, and sustained-release properties of curcumin through the complexation with soy protein fibrils. LWT. 2023;180:114723. DOI: https://doi.org/10.1016/j.lwt.2023.114723

108. Ji F, Wang Z, Bai X, Zhao Y, Zhong X, Luo S, Shen Y, Jiang S, Zheng Z. Ultrasound‒treated soy protein fibrils: A potential vehicle for curcumin with improved water solubility, antioxidant activity and sustained‒release property. Food Hydrocoll. 2023;143:108929. DOI: https://doi.org/10.1016/j.foodhyd.2023.108929

109. Wu C-C, Zhang H-T, Gao Z-X, Qu J-J, Zhu L, Zhan X-B. Enhanced solubility of curcumin by complexation with fermented cyclic β-1,2-glucans. J Pharm Biomed Anal. 2022;211:114613. DOI: https://doi.org/10.1016/j.jpba.2022.114613

110. Jiang Z, Gan J, Wang L, Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem. 2023;399:133952. DOI: https://doi.org/10.1016/j.foodchem.2022.133952

111. Iimure T, Kimura T, Araki S, Kihara M, Sato M, Yamada S, Shigyou T, Sato K. Mutation analysis of barley malt protein Z4 and protein Z7 on beer foam stability. J Agric Food Chem. 2012;60(6):1548-1554. DOI: https://doi.org/10.1021/jf2044718

112. Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym. 2014;99:499-507. DOI: https://doi.org/10.1016/j.carbpol.2013.08.067

113. Manju S, Sreenivasan K. Synthesis and Characterization of a Cytotoxic Cationic Polyvinylpyrrolidone–Curcumin Conjugate. J Pharm Sci. 2011;100(2):504-511. DOI: https://doi.org/10.1002/jps.22278

114. Xu Y, Zhao Y, Wei Z, Zhang H, Dong M, Huang M, Han M, Xu X, Zhou G. Modification of myofibrillar protein via glycation: Physicochemical characterization, rheological behavior and solubility property. Food Hydrocoll. 2020;105:105852. DOI: https://doi.org/10.1016/j.foodhyd.2020.105852

115. Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discov Today. 2020;25(9):1718-1726. DOI: https://doi.org/10.1016/j.drudis.2020.06.028

116. Chen S, Wu J, Tang Q, Xu C, Huang Y, Huang D, Luo F, Wu Y, Yan F, Weng Z, Wang S. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr Polym. 2020;228:115398. DOI: https://doi.org/10.1016/j.carbpol.2019.115398

117. Zhao L, Ding X, Khan IM, Yue L, Zhang Y, Wang Z. Preparation and characterization of curcumin/chitosan conjugate as an efficient photodynamic antibacterial agent. Carbohydr Polym. 2023;313:120852. DOI: https://doi.org/10.1016/j.carbpol.2023.120852

118. Pan R, Zeng Y, Liu G, Wei Y, Xu Y, Tao L. Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polym Chem. 2020;11(7):1321-1326. DOI: https://doi.org/10.1039/C9PY01596E

119. Dash R, Biswal J, Yadav M, Sharma T, Mohapatra S, Prusty SK. Novel atorvastatin-curcumin conjugate nanogel, a selective COX2 inhibitor with enhanced biopharmaceutical profile: Design, synthesis, in silico, in vitro, and in vivo investigation. J Drug Deliv Sci Technol. 2023;81:104211. DOI: https://doi.org/10.1016/j.jddst.2023.104211

120. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142-9147. DOI: https://doi.org/10.1021/ja048266j

121. Duan M, Luo M, Yang Z, Xiong Y, Shi P, Fang S, Qin S. Application of choline-based deep eutectic solvent for the extraction of crude-oil contaminated soils. Environ Technol. 2021;42(18):2896-2901. DOI: https://doi.org/10.1080/09593330.2020.1717643

122. Huang K, Shen Y, Wang X, Song X, Yuan W, Xie J, Wang S, Bai J, Wang J. Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil. Chemosphere. 2021;279:130568. DOI: https://doi.org/10.1016/j.chemosphere.2021.130568

123. de Almeida Pontes PV, Ayumi Shiwaku I, Maximo GJ, Caldas Batista EA. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021;352:129346. DOI: https://doi.org/10.1016/j.foodchem.2021.129346

124. Rente D, Paiva A, Duarte AR. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules. 2021;26(8):2336. DOI: https://doi.org/10.3390/molecules26082336

125. Raj T, Morya R, Chandrasekhar K, Kumar D, Soam S, Kumar R, Patel AK, Kim S-H. Microalgae biomass deconstruction using green solvents: Challenges and future opportunities. Bioresour Technol. 2023;369:128429. DOI: https://doi.org/10.1016/j.biortech.2022.128429

126. Dai Y, Verpoorte R, Choi YH. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014;159:116-121. DOI: https://doi.org/10.1016/j.foodchem.2014.02.155

127. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61-68. DOI: https://doi.org/10.1016/j.aca.2012.12.019

128. Cao J, Cao J, Wang H, Chen L, Cao F, Su E. Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. J Mol Liq. 2020;318:113997. DOI: https://doi.org/10.1016/j.molliq.2020.113997

129. Yu W, Bo Y, Luo Y, Huang X, Zhang R, Zhang J. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin–insight from experiment and theoretical calculation. Chin J Chem Eng. 2023;59:160-168. DOI: https://doi.org/10.1016/j.cjche.2023.01.005

130. Patil SS, Pathak A, Rathod VK. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. Ultrason Sonochem. 2021;70:105267. DOI: https://doi.org/10.1016/j.ultsonch.2020.105267

131. Dhingra D, Bisht M, Bhawna B, Pandey S. Enhanced solubility and improved stability of curcumin in novel water-in-deep eutectic solvent microemulsions. J Mol Liq. 2021;339:117037. DOI: https://doi.org/10.1016/j.molliq.2021.117037

132. Bashkeran T, Harun A, Umakoshi H, Watanabe N, Mohd Nadzir M. Enhanced Curcumin Delivery and Stability through Natural Deep Eutectic Solvent-Based Niosomes. J Mol Liq. 2024;409:125446. DOI: https://doi.org/10.1016/j.molliq.2024.125446

133. Hirpara D, Chavda V, Hirapara N, Kumar S. Inorganic salt-induced micellar morphologies in deep eutectic solvent: Structure and curcumin solubilization. J Mol Liq. 2024;411:125761. DOI: https://doi.org/10.1016/j.molliq.2024.125761

134. Jafari SM, McClements DJ. Nanotechnology Approaches for Increasing Nutrient Bioavailability. Adv Food Nutr Res. 2017;81:1-30. DOI: https://doi.org/10.1016/bs.afnr.2016.12.008

135. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70. DOI: https://doi.org/10.1016/j.jsps.2017.10.012

136. Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int J Nanomedicine. 2020;15:3099-3120. DOI: https://doi.org/10.2147/IJN.S210320

137. Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer Nanoparticles for the Intravenous Delivery of Anticancer Drugs: the Checkpoints on the Road from the Synthesis to Clinical Translation. Nanoscale. 2018;10:22701-22719. DOI: https://doi.org/10.1039/C8NR05933K

138. Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW, Kweon D-H, Choi YJ. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020;302:125328. DOI: https://doi.org/10.1016/j.foodchem.2019.125328

139. Dourado D, Miranda JA, de Oliveira MC, Freire DT, Xavier-Júnior FH, Paredes-Gamero EJ, Alencar É DN. Recent Trends in Curcumin-Containing Inorganic-Based Nanoparticles Intended for In Vivo Cancer Therapy. Pharmaceutics. 2024;16(2):177. DOI: https://doi.org/10.3390/pharmaceutics16020177

140. Bagheri M, Fens MH, Kleijn TG, Capomaccio RB, Mehn D, Krawczyk PM, Scutigliani EM, Gurinov A, Baldus M, van Kronenburg NCH, Kok RJ, Heger M, van Nostrum CF, Hennink WE. In Vitro and In Vivo Studies on HPMA-Based Polymeric Micelles Loaded with Curcumin. Mol Pharmaceutics. 2021;18(3):1247-1263. DOI: https://doi.org/10.1021/acs.molpharmaceut.0c01114

141. Lin D, Xiao L, Qin W, Loy DA, Wu Z, Chen H, Zhang Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr Polym. 2022;281:119080. DOI: https://doi.org/10.1016/j.carbpol.2021.119080

142. Zhou P, Zhou H, Shu J, Fu S, Yang Z. Skin wound healing promoted by novel curcumin-loaded micelle hydrogel. Ann Transl Med. 2021;9(14):1152. DOI: https://doi.org/10.21037/atm-21-2872

143. Santonocito D, Sarpietro MG, Carbone C, Panico A, Campisi A, Siciliano EA, Sposito G, Castelli F, Puglia C. Curcumin Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A Preliminary Study. Molecules. 2020;25(13):2991. DOI: https://doi.org/10.3390/molecules25132991

144. Lee H-J, Jeong M, Na Y-G, Kim S-J, Lee H-K, Cho C-W. An EGF- and Curcumin-Co-Encapsulated Nanostructured Lipid Carrier Accelerates Chronic-Wound Healing in Diabetic Rats. Molecules. 2020;25(20):4610. DOI: https://doi.org/10.3390/molecules25204610

145. Kang C, Jung E, Hyeon H, Seon S, Lee D. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomed: Nanotechnol Biol Med. 2020;23:102104. DOI: https://doi.org/10.1016/j.nano.2019.102104

146. Jiang L, Guo P, Ju J, Zhu X, Wu S, Dai J. Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI. Eur J Pharm Biopharm. 2023;182:21-31. DOI: https://doi.org/10.1016/j.ejpb.2022.11.017

147. Yan L, Liu H, Wang Y, Zhang L, Ma C, Abd El-Aty AM. Fabrication of polysaccharide-coated oleanolic acid-curcumin-coassembled nanoparticles (OA/Cur NPs): Enhancement of colloidal stability and water solubility. Food Chem. 2024;451:139482. DOI: https://doi.org/10.1016/j.foodchem.2024.139482

148. Wang C, Han Z, Wu Y, Lu X, Tang X, Xiao J, Li N. Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food Chem Toxicol. 2021;151:112123. DOI: https://doi.org/10.1016/j.fct.2021.112123

149. Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, Rajabzadeh G, Gorji A. Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: an In Vitro Study. Mol Neurobiol. 2020;57(8):3391-3411. DOI: https://doi.org/10.1007/s12035-020-01922-5

150. Pi C, Zhao W, Zeng M, Yuan J, Shen H, Li K, Su Z, Liu Z, Wen J, Song X, Lee RJ, Wei Y, Zhao L. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv. 2022;29(1):1878-1891. DOI: https://doi.org/10.1080/10717544.2022.2086938

151. Mohamed JM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr Polym. 2021;252:117180. DOI: https://doi.org/10.1016/j.carbpol.2020.117180

152. Sahne F, Mohammadi M, Najafpour GD. Single-Layer Assembly of Multifunctional Carboxymethylcellulose on Graphene Oxide Nanoparticles for Improving in Vivo Curcumin Delivery into Tumor Cells. ACS Biomater Sci Eng. 2019;5(5):2595-2609. DOI: https://doi.org/10.1021/acsbiomaterials.8b01628

153. Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J, Sil PC. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res. 2019;18:161-172. DOI: https://doi.org/10.1016/j.jare.2019.02.036

154. Yu S, Wang S, Xie Z, Yu S, Li L, Xiao H, Song Y. Hyaluronic acid coating on the surface of curcumin-loaded ZIF-8 nanoparticles for improved breast cancer therapy: An in vitro and in vivo study. Colloids Surf B Biointerfaces. 2021;203:111759. DOI: https://doi.org/10.1016/j.colsurfb.2021.111759

155. Dehghani S, Hosseini M, Haghgoo S, Changizi V, Akbari Javar H, Khoobi M, Riahi Alam N. Multifunctional MIL-Cur@FC as a theranostic agent for magnetic resonance imaging and targeting drug delivery: in vitro and in vivo study. J Drug Target. 2020;28(6):668-680. DOI: https://doi.org/10.1080/1061186X.2019.1710839

156. Darwesh R, Elbialy NS. Iron oxide nanoparticles conjugated curcumin to promote high therapeutic efficacy of curcumin against hepatocellular carcinoma. Inorg Chem Commun. 2021;126:108482. DOI: https://doi.org/10.1016/j.inoche.2021.108482

157. Patra JK, Das, Fraceto L, Campos E, Rodriguez Torres M, Acosta-Torres L, Diaz-Torres L, Grillo R, Swamy M, Sharma S, Habtemariam S, Shin H. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:1-33. DOI: https://doi.org/10.1186/s12951-018-0392-8

158. Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol. 2016;68(12):1481-1500. DOI: https://doi.org/10.1111/jphp.12611

159. Feltrin FDS, Agner T, Sayer C, Lona LMF. Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci. 2022;300:102582. DOI: https://doi.org/10.1016/j.cis.2021.102582

160. Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials (Basel). 2018;8(2):126. DOI: https://doi.org/10.3390/nano8020126

161. Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong SM, Pramanik D, Chenna V, Karikari C, Sharma R, Goggins MG, Rudek MA, Ravi R, Maitra A, Maitra A. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther. 2010;9(8):2255-2264. DOI: https://doi.org/10.1158/1535-7163.MCT-10-0172

162. Shen W, Yan M, Wu S, Ge X, Liu S, Du Y, Zheng Y, Wu L, Zhang Y, Mao Y. Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating. Int J Biol Macromol. 2022;204:410-418. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.025

163. Ren J, Wu H, Lu Z, Qin Q, Jiao X, Meng G, Liu W, Li G. pH-driven preparation of pea protein isolate-curcumin nanoparticles effectively enhances antitumor activity. Int J Biol Macromol. 2024;256(Pt 1):128383. DOI: https://doi.org/10.1016/j.ijbiomac.2023.128383

164. Eskandari Z, Bahadori F, Yenigun VB, Demiray M, Eroğlu MS, Kocyigit A, Oner ET. Levan enhanced the NF-κB suppression activity of an oral nano PLGA-curcumin formulation in breast cancer treatment. Int J Biol Macromol. 2021;189:223-231. DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.115

165. Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497-508. DOI: https://doi.org/10.1517/17425247.2012.673278

166. Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J Pharm Sci. 2014;103(1):29-52. DOI: https://doi.org/10.1002/jps.23773

167. Luiz MT, Dutra JAP, Ribeiro TdC, Carvalho GC, Sábio RM, Marchetti JM, Chorilli M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf A: Physicochem Eng Asp. 2022;645:128935. DOI: https://doi.org/10.1016/j.colsurfa.2022.128935

168. Tai K, Rappolt M, Mao L, Gao Y, Yuan F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem. 2020;326:126973. DOI: https://doi.org/10.1016/j.foodchem.2020.126973

169. Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83-101. DOI: https://doi.org/10.1016/j.addr.2012.09.021

170. Gupta T, Singh J, Kaur S, Sandhu S, Singh G, Kaur IP. Enhancing Bioavailability and Stability of Curcumin Using Solid Lipid Nanoparticles (CLEN): A Covenant for Its Effectiveness. Front Bioeng Biotechnol. 2020;8:879. DOI: https://doi.org/10.3389/fbioe.2020.00879

171. Rahman MA, Ali A, Rahamathulla M, Salam S, Hani U, Wahab S, Warsi MH, Yusuf M, Ali A, Mittal V, Harwansh RK. Fabrication of Sustained Release Curcumin-Loaded Solid Lipid Nanoparticles (Cur-SLNs) as a Potential Drug Delivery System for the Treatment of Lung Cancer: Optimization of Formulation and In Vitro Biological Evaluation. Polymers. 2023;15(3):542. DOI: https://doi.org/10.3390/polym15030542

172. Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv Pharm Bull. 2020;10(2):150-165. DOI: https://doi.org/10.34172/apb.2020.021

173. Won J-H, Jin M, Na Y-G, Song B, Yun T-S, Hwang Y-R, Lee S-R, Je S, Kim J-Y, Lee H-K. The combinative strategy for improving the intestinal stability and cellular absorption of curcumin by enteric coating of the optimized nanostructured lipid carriers. J Drug Deliv Sci Technol. 2023;89:105108. DOI: https://doi.org/10.1016/j.jddst.2023.105108

174. Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. Nanomaterials. 2021;11(2):460. DOI: https://doi.org/10.3390/nano11020460

175. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol. 2017;13:18-23. DOI: https://doi.org/10.1016/j.susmat.2017.08.001

176. Sardar R, Funston AM, Mulvaney P, Murray RW. Gold Nanoparticles: Past, Present, and Future. Langmuir. 2009;25(24):13840-13851. DOI: https://doi.org/10.1021/la9019475

177. Din MI, Rehan R. Synthesis, Characterization, and Applications of Copper Nanoparticles. Anal Lett. 2017;50(1):50-62. DOI: https://doi.org/10.1080/00032719.2016.1172081

178. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015;7(3):219-242. DOI: https://doi.org/10.1007/s40820-015-0040-x

179. Haider AJ, Jameel ZN, Al-Hussaini IHM. Review on: Titanium Dioxide Applications. Energy Procedia. 2019;157:17-29. DOI: https://doi.org/10.1016/j.egypro.2018.11.159

180. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49-67. DOI: https://doi.org/10.2147/NSA.S99986

181. Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015;5(3):124-133. DOI: https://doi.org/10.4103/2230-973X.160844

182. Shedge AA, Pansare SV, Khairkar SR, Chhatre SY, Chakrabarti S, Nagarkar AA, Pansare AV, Patil VR. Nanocomposite of functional silver metal containing curcumin biomolecule model systems: Protein BSA bioavailability. J Inorg Biochem. 2020;212:111210. DOI: https://doi.org/10.1016/j.jinorgbio.2020.111210

183. Gao Y, Liu K, Zhang Y, Sun Z, Song B, Wang Y, Zhang B, Chen X, Hu D, Wen J, Wang H, Wang K, Wang L. Hyaluronic acid-modified curcumin-copper complex nano delivery system for rapid healing of bacterial prostatitis. Carbohydr Polym. 2023;310:120668. DOI: https://doi.org/10.1016/j.carbpol.2023.120668

184. Wang C, Pan J, Xu H, Chen Q, Zhou S, Tang L, Qiu L, Jiang P. Facilely prepared ferric-curcumin complex nanoparticles exert improved stability and photothermal enhanced antibacterial effects for food preservation. LWT. 2024;205:116418. DOI: https://doi.org/10.1016/j.lwt.2024.116418

185. Si W, Gao Y, Mei X, Wu C, Li J, Zhang J. Mesoporous silica nanoparticles loaded with capsaicin and their oxidation resistance in meat preservation. Food Chem. 2021;344:128737. DOI: https://doi.org/10.1016/j.foodchem.2020.128737

186. García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev. 2021;177:113953. DOI: https://doi.org/10.1016/j.addr.2021.113953

187. Iranshahy M, Hanafi-Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S, Filosa R, Nezhad IF, Hasanpour M. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review. RSC Adv. 2023;13(32):22250-22267. DOI: https://doi.org/10.1039/D3RA02772D

188. Jiao L, Li Y, Hu J, Zhao S, Zhang X, Benjakul S, Zhang B. Curcumin-loaded food-grade nano-silica hybrid material exhibiting improved photodynamic effect and its application for the preservation of small yellow croaker (Larimichthys polyactis). Food Res Int. 2024;188:114492. DOI: https://doi.org/10.1016/j.foodres.2024.114492

189. Sneharani AH. Curcumin–sunflower protein nanoparticles—A potential antiinflammatory agent. J Food Biochem. 2019;43(8):e12909. DOI: https://doi.org/10.1111/jfbc.12909

190. Matloubi Z, Hassan Z. HSA-curcumin nanoparticles: a promising substitution for Curcumin as a Cancer chemoprevention and therapy. Daru, J Pharm Sci. 2020;28(1):209-219. DOI: https://doi.org/10.1007/s40199-020-00331-2

191. Chen X, Zhang T-Y, Wu Y-C, Gong P-X, Li H-J. Foxtail millet prolamin as an effective encapsulant deliver curcumin by fabricating caseinate stabilized composite nanoparticles. Food Chem. 2022;367:130764. DOI: https://doi.org/10.1016/j.foodchem.2021.130764

192. Fan Y, Yi J, Zhang Y, Yokoyama W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem. 2018;239:1210-1218. DOI: https://doi.org/10.1016/j.foodchem.2017.07.075

193. Du Y, Chu J, Wang R, Zhang C, Zhang J, Zhi K. Efficient encapsulation of fat-soluble food-derived biofunctional substances (curcumin as an example) in dual-modified starch-based nanoparticles containing large conjugated systems. Int J Biol Macromol. 2023;242:125078. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125078

194. Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood–Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine. 2021;16:7433-7447. DOI: https://doi.org/10.2147/IJN.S327737

195. Yuan Y, Huang J, He S, Ma M, Wang D, Xu Y. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Food Funct. 2021;12(13):5719-5730. DOI: https://doi.org/10.1039/D1FO00942G

196. Chanburee S, Tiyaboonchai W. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers. J Biomed Mater Res B: Appl Biomater. 2018;106(2):734-741. DOI: https://doi.org/10.1002/jbm.b.33884

197. Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li S-D. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Mol Pharmaceutics. 2019;16(9):3957-3967. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00583

198. Kang N-W, Kim M-H, Sohn S-Y, Kim K-T, Park J-H, Lee S-Y, Lee J-Y, Kim D-D. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials. 2018;182:245-258. DOI: https://doi.org/10.1016/j.biomaterials.2018.08.030

199. Mittal A, Kumar N, Chauhan NS. Curcumin Encapsulated PEGylated Nanoliposomes: A Potential Anti-Infective Therapeutic Agent. Indian J Microbiol. 2019;59(3):336-343. DOI: https://doi.org/10.1007/s12088-019-00811-3

200. Iqbal R, Mehmood Z, Baig A, Khalid N. Formulation and characterization of food grade O/W nanoemulsions encapsulating quercetin and curcumin: Insights on enhancing solubility characteristics. Food Bioprod Process. 2020;123:304-311. DOI: https://doi.org/10.1016/j.fbp.2020.07.013

201. Deng J, Wang J, Hu H, Hong J, Yang L, Zhou H, Xu D. Application of mesoporous calcium silicate nanoparticles as a potential SD carrier to improve the solubility of curcumin. J Dispers Sci Technol. 2023;44(12):2258-2266. DOI: https://doi.org/10.1080/01932691.2022.2068567

202. Fitriani L, Azizah H, Hasanah U, Zaini E. Enhancement of curcumin solubility and dissolution by adsorption in mesoporous SBA-15. Int J Appl Pharm. 2023;15(Special Issue 1):61-67. DOI: https://doi.org/10.22159/ijap.2023.v15s1.47515

203. Federsel H-J. Chemical Process Research and Development in the 21st Century: Challenges, Strategies, and Solutions from a Pharmaceutical Industry Perspective. Accounts Chem Res. 2009;42(5):671-680. DOI: https://doi.org/10.1021/ar800257v

204. Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012;14(2):282-295. DOI: https://doi.org/10.1208/s12248-012-9339-4

205. Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci. 2021;22(4):2011. DOI: https://doi.org/10.3390/ijms22042011

206. Amarji B, Abed SN, Bairagi U, Deb PK, Al-Attraqchi O, Choudhury AA, Tekade RK. Chapter 18 - Four Stages of Pharmaceutical Product Development: Preformulation, Prototype Development and Scale-Up, Biological Aspects, and Commercialization. In: Dosage Form Design Considerations: Academic Press; 2018. 637-668 p. DOI: https://doi.org/10.1016/B978-0-12-814423-7.00018-6

207. Pivari F, Mingione A, Piazzini G, Ceccarani C, Ottaviano E, Brasacchio C, Dei Cas M, Vischi M, Cozzolino MG, Fogagnolo P, Riva A, Petrangolini G, Barrea L, Di Renzo L, Borghi E, Signorelli P, Paroni R, Soldati L. Curcumin Supplementation (Meriva(®)) Modulates Inflammation, Lipid Peroxidation and Gut Microbiota Composition in Chronic Kidney Disease. Nutrients. 2022;14(1):231. DOI: https://doi.org/10.3390/nu14010231

208. Antony B, inventor; Patent number: US7879373B2. Arjuna Natural Extracis, Ltd., Alwaye (IN), assignee. Composition to enhance the bioavailability of curcumin. 2011.

209. Hundshammer C, Schön C, Kimura M, Furune T, Terao K, Elgeti D, Mohr R. Enhanced metabolic bioavailability of tetrahydrocurcumin after oral supplementation of a γ-cyclodextrin curcumin complex. J Funct Foods. 2021;79:104410. DOI: https://doi.org/10.1016/j.jff.2021.104410

210. Sunagawa Y, Miyazaki Y, Funamoto M, Shimizu K, Shimizu S, Nurmila S, Katanasaka Y, Ito M, Ogawa T, Ozawa-Umeta H, Hasegawa K, Morimoto T. A novel amorphous preparation improved curcumin bioavailability in healthy volunteers: A single-dose, double-blind, two-way crossover study. J Funct Foods. 2021;81:104443. DOI: https://doi.org/10.1016/j.jff.2021.104443

211. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;58(3):516-527. DOI: https://doi.org/10.1002/mnfr.201300724

212. Stohs SJ, Ji J, Bucci LR, Preuss HG. A Comparative Pharmacokinetic Assessment of a Novel Highly Bioavailable Curcumin Formulation with 95% Curcumin: A Randomized, Double-Blind, Crossover Study. J Am Coll Nutr. 2018;37(1):51-59. DOI: https://doi.org/10.1080/07315724.2017.1358118

213. Frautschy SA, Cole GM, inventors; Patent number: US9192644B2. The Regents of the University of California, Oakland, CA (US); Department of Veterans Affairs, Washington, DC (US) assignee. Bioavailable curcuminoid formulations for treating alzheimer's disease and other age-related disorders. 2015.

214. Pancholi V, Smina TP, Kunnumakkara AB, Maliakel B, Krishnakumar IM. Safety assessment of a highly bioavailable curcumin-galactomannoside complex (CurQfen) in healthy volunteers, with a special reference to the recent hepatotoxic reports of curcumin supplements: A 90-days prospective study. Toxicol Rep. 2021;8:1255-1264. DOI: https://doi.org/10.1016/j.toxrep.2021.06.008

215. Jacob J, Amalraj A, Raj KKJ, Divya C, Kunnumakkara AB, Gopi S. A novel bioavailable hydrogenated curcuminoids formulation (CuroWhite™) improves symptoms and diagnostic indicators in rheumatoid arthritis patients - A randomized, double blind and placebo controlled study. J Tradit Complement Med. 2019;9(4):346-352. DOI: https://doi.org/10.1016/j.jtcme.2018.06.001

216. Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomed: Nanotechnol Biol Med. 2015;11(7):1689-1694. DOI: https://doi.org/10.1016/j.nano.2015.05.005

217. Murthy SK. Nanoparticles in modern medicine: State of the art and future challenges. Int J Nanomedicine. 2007;2(2):129-141.

218. Kaya SI, Cetinkaya A, Ozkan SA. Green analytical chemistry approaches on environmental analysis. Trends Environ Anal Chem. 2022;33:e00157. DOI: https://doi.org/10.1016/j.teac.2022.e00157

219. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, Robert McElroy C, Sherwood J. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016;4(1):7. DOI: https://doi.org/10.1186/s40508-016-0051-z

220. Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP. Green and Sustainable Solvents in Chemical Processes. Chem Rev. 2018;118(2):747-800. DOI: https://doi.org/10.1021/acs.chemrev.7b00571

221. Lima AL, Pinho LAG, Chaker JA, Sa-Barreto LL, Marreto RN, Gratieri T, Gelfuso GM, Cunha-Filho M. Hot-Melt Extrusion as an Advantageous Technology to Obtain Effervescent Drug Products. Pharmaceutics. 2020;12(8):779. DOI: https://doi.org/10.3390/pharmaceutics12080779

222. Lu M, Guo Z, Li Y, Pang H, Lin L, Liu X, Pan X, Wu C. Application of Hot Melt Extrusion for Poorly Water-Soluble Drugs: Limitations, Advances and Future Prospects. Curr Pharma Des. 2013;20(3):369-387. DOI: https://doi.org/10.2174/13816128113199990402

223. Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol. 2021;63:102452. DOI: https://doi.org/10.1016/j.jddst.2021.102452