Antimalarial and Antioxidant Effects of Syzygium cumini (L.) Skeels (Myrtaceae) Fruit Fraction in Plasmodium berghei–Infected Pregnant Mice
Main Article Content
Abstract
Malaria in pregnancy constitutes a principal factor in the enduring prevalence of significant maternal and foetal illness and fatality. This study investigated the potential of Syzygium cumini (L.) Skeels (Myrtaceae) fruit fraction in modulating TNF-α, preserving placental spiral artery integrity, and improving foetal outcomes in Plasmodium berghei-infected pregnant mice. A true experimental design was conducted using second-trimester pregnant mice (n = 5 per group), which were infected with the P. berghei ANKA strain. Each mouse was administered an intraperitoneal dose of 0.2 mL phosphate-buffered saline comprising roughly 1 × 10⁶ parasitized red blood cells obtained from donor mice with 20–30% parasitaemia. The animals were categorized into six groups: normal control (K1), infected untreated (K2), drug control treated with dihydroartemisinin–piperaquine (5 mg/kg body weight, oral), and three treatment groups receiving Syzygium cumini fruit (SCF) fraction at doses of 600 mg/kg (P1), 800 mg/kg (P2), and 1200 mg/kg (P3). Placental TNF-α levels were significantly reduced in all treatment groups compared with the infected control (K2), with the greatest reduction observed at 1200 mg/kg (P3, p < 0.05). Histological analysis revealed that P2 and P3 significantly improved spiral artery diameter and wall thickness, while P1 produced moderate changes. Foetal body length increased significantly in all treatment groups (p < 0.05), and foetal weight in P3 approached the normal control (K1). The (SCF) fraction demonstrated anti-inflammatory properties and improved placental function and supported foetal growth. These findings demonstrate its potential as a complementary natural therapeutic agent for managing malaria-associated complications during pregnancy.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Cutts JC, Agius PA, Zaw Lin, Powell R, Moore K, Draper B, Singhal R, Nosten F, McGready R. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med. 2020;18(1):1–14. doi:10.1186/s12916-020-1504-4
2.Gozalo AS, Robinson CK, Holdridge J, Franco Mahecha OL, Elkins WR. Overview of Plasmodium spp. and animal models in malaria research. Comp Med. 2024;74(6):555–67. doi:10.30802/AALAS-CM-24-000123
3.Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Turco MY, Lo A, Blokzijl F, Regev A, Teichmann SA. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst. 2024;15(5):425–444.e9. doi:10.1016 /j.cels.2024.03.007
4.Budiningsih I, Dachlan YP, Hadi U, Middeldorp JM. Quantitative cytokine level of TNF-α, IFN-γ, IL-10, TGF-β and circulating Epstein-Barr virus DNA load in individuals with acute malaria due to P. falciparum or P. vivax or double infection in a malaria endemic region in Indonesia. PLoS One. 2021;16(12):e0260699. doi:10.1371/journal.pone.0260699
5.Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial mechanisms and resistance status of artemisinin and its derivatives. Trop Med Infect Dis. 2024;9(1):102. doi:10.3390/tropicalmed9010102
6.Ugwu AO, Chukwuanukwu RC, Ehiaghe FA, Ugwu EO. The role of immune-inflammatory markers in children with complicated and uncomplicated malaria in Enugu, Nigeria. BMC Immunol. 2024;25(1):34. doi:10.1186/s12865-024-00567-8
7.Maslachah L, Purwitasari N. In vitro antimalarial activity of Syzygium cumini fruit fraction. Open Vet J. 2023;13(9):1116–23. doi:10.4314/ovj.v13i9.5
8.Jagetia GC. Bioactive phytoconstituents and medicinal properties of jamun (Syzygium cumini). J Explor Res Pharmacol. 2024;000(000):000–000. doi:10.1016/j.jerp.2024.07.001
9.Kokori E, Olatunji G, Ukoaka BM, Abraham IC, Komolafe R, Ajekiigbe VO, Okonko IO, Adewumi OO. Prevalence, characteristics, and treatment outcome of congenital malaria in Nigeria: a systematic review. Malar J. 2025;24:24. doi:10.1186/s12936-025-04012-7
10.Priya SH, Prakasan N, Purushothaman J. Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: a comparative study. J Intercult Ethnopharmacol. 2017;6(1):107–14. doi:10.5455/jice.20170322044012
11.Thompson JM, Eick SM, Dailey C, Dale AP, Mehta M, Nair A, Omer S, Leke R, Rogerson SJ. Relationship between pregnancy-associated malaria and adverse pregnancy outcomes: a systematic review and meta-analysis. J Trop Pediatr. 2020;66:327–338. doi:10.1093/tropej/fmz056
12.Armalina D, Susilaningsih N, Sutanto H, Sunarno, Priharsanti CHN, Setiyorini N. Improving the accuracy of pregnancy detection in Balb/C mice: innovation in animal model pregnancy research application. J Exp Biol Agric Sci. 2025;13(4):641–647. Available from: https://jebas.org/ojs/index.php/ jebas/article/view /3071
13.Maslachah L, Sugihartuti R, Wahyuni RS. Hematologic changes and splenic index on malaria mice models given Syzygium cumini extract as an adjuvant therapy. Vet World. 2019;12(1):106–11. doi:10.14202/vetworld.2019.106-111
14.Maslachah L, Purwitasari N. In vitro antimalarial activity of Syzygium cumini fruit fraction. Open Vet J. 2023;13(9):1116–23. doi:10.4314/ovj.v13i9.5
15.Maslachah L, Purwitasari N. In vitro antimalarial activity of Syzygium cumini fruit fraction. Open Vet J [Internet]. 2023 [cited 2025;13(9):1116–23. Available from: https://www.ncbi .nlm.nih.gov/pmc/articles/PMC10576581/
16.Angupale JR, Ajayi CO, Tusiimire J, Ngwuluka NC. Optimization of in vivo antimalarial efficacy of combinations of aqueous leaf extracts of Artemisia annua L., Vernonia amygdalina Del, and Microglossa pyrifolia (Lam.) Kuntze using factorial design. BMC Complement Med Ther. 2024;24(1):48. doi:10.1186/s12906-024-04078-3
17.Erika Maulydya C, Yuniarti R, Indrayani Dalimunthe G, Munandar Nasution H. Analisis aktivitas antioksidan teh daun jamblang (Syzygium cumini (L.) Skeels) dengan metode DPPH (1,1-Diphenyl-2-Picrylhydrazyl). Int J Chem Biol Sci. 2023;2(1):1–9.
18. Kakuru A, Jagannathan P, Kajubi R, Ochieng T, Ochokoru H, Nakalembe M, Nankabirwa J, Kamya MR, Dorsey G, Rosenthal PJ. Impact of intermittent preventive treatment of malaria in pregnancy with dihydroartemisinin-piperaquine versus sulfadoxine-pyrimethamine on the incidence of malaria in infancy: a randomized controlled trial. BMC Med. 2020;18(1):270. doi:10.1186/s12916-020-01803-8
19.Mahamat O, Gisele Ndum K, Laurentine S, Ngum Helen N, Wamba C, Mbango J. Cord malaria infection, complement activation, oxidative stress, gestational age, and birth weight, characterized by high Plasmodium falciparum prevalence in Bamenda, Cameroon. J Trop Med. 2020;2020:7415623. doi:10.1155/2020/7415623
20.Ozarslan N, Mong C, Ategeka J, Li L, Buarpung S, Robinson JF, Adhikari R, Okoth P, Omony J, Mutyaba L. Placental malaria induces a unique methylation profile associated with fetal growth restriction. Epigenetics. 2025;20(1):2475276. doi:10.1080/15592294.2025.2475276
21.Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol. 2020;11:575197. doi:10.3389/ fimmu.2020.575197
22.Santos CA, Almeida FA, Quecán BXV, Pereira PAP, Gandra KMB, Cunha LR, Ribeiro RT, Oliveira V, Silva M, Carvalho L. Bioactive properties of Syzygium cumini (L.) Skeels pulp and seed phenolic extracts. Front Microbiol. 2020;11:1097. doi:10.3389/fmicb.2020.01097
23.Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Turco MY, Lo A, Blokzijl F, Regev A, Teichmann SA. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst. 2024;15(5):425–444.e9. doi:10.1016/j.cels.2024.03.007
24.Tong Y, Ratnasiri K, Hanif S, Nguyen AT, Roh ME, Dorsey G, Maiga AW, Desai M. Intermittent preventive treatment for malaria in pregnancy and infant growth: a mediation analysis of a randomised trial. EBioMedicine [Internet]. 2024;109:105397. Available from: https://linkinghub.elsevier.com/retrieve /pii/S235239642400433X
25.Pandey J, Jaishwal N, Jayswal M, Gupta DC, Dhakal B, Budean D, Singh A, Kumar P, Verma S. Evaluation of antioxidant, xanthine oxidase-inhibitory, and antibacterial activity of Syzygium cumini Linn. seed extracts. Plants. 2025;14(3):423. doi:10.3390/plants14030423


