Molecular Discrimination and Phylogenetic Relationship of some Medicinal Plants Using the Plastidial rbcL Gene: A Case Study of Lannea species

Main Article Content

Sabo
Hadiza M. Ibrahim
Ali M. Zakariya

Abstract

The conventional taxonomic system is not without inherent limitations, and this often leads to misidentification of medicinal plants and, consequently, adulteration. To overcome this challenge, sequencing of genomic Deoxyribonucleic acid (DNA) has been used as a standardized method of plant identification. Thus, this study was carried out to discriminate some members of the Lannea species (L. welwitschia, L. coromandelica, L. microcarpa and L. barteri) towards providing genetic data for proper identification and quality control of these medicinal plants. Genomic DNA was isolated using the cetyltrimethylammonium bromide (CTAB) method, and its purity and concentration were measured with a spectrophotometer. Polymerase chain reaction (PCR) amplification, purification of PCR products, and quality assessment were conducted following standard procedures. PCR products sequencing was conducted using a sequencing kit. Sequence alignment and phylogenetic analysis were performed utilizing molecular evolutionary genetics analysis (MEGA v6) and BioEdit software. PCR amplification of the rbcL gene marker was significantly successful. The rbcL amplicons generated high-quality sequences, and basic local alignment search tool (BLAST) analysis correctly matched L. welwitschia and L. coromandelica with hits >95%. Phylogenetic relationship analysis revealed clear differentiation in Lannea species. This study generated genetic data that can be used to authenticate these Lannea species members, thereby enhancing the safety and effectiveness of these medicinal plants within Nigeria's traditional medical system. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Molecular Discrimination and Phylogenetic Relationship of some Medicinal Plants Using the Plastidial rbcL Gene: A Case Study of Lannea species . (2025). Tropical Journal of Natural Product Research , 9(7), 3256 – 3260. https://doi.org/10.26538/tjnpr/v9i7.52

References

1. Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med. 2022; 17: 112. DOI: 10.1186/s13020-022-00655-y.

2. Tnah LH, Lee SL, Tan AL, Lee CT, Ng KKS, Ng CH, Nurul Farhanah Z. DNA barcode database of common herbal plants in the tropics: a resource for herbal product authentication. Food Control. 2019; 95: 318-326. DOI: https://doi.org/10.1016/j.foodcont.2018.08.022.

3. Sawarkar AD, Shrimankar DD, Kumar M, Kumar P, Kumar S, Singh L. Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic Review. Mol Biotechnol. 2021; 63: 651-675. DOI: 10.1007/s12033-021-00337-4.

4. Safhi FA, Alshamrani SM, Bogmaza AFM, El-Moneim DA. DNA Barcoding of Wild Plants with Potential Medicinal Properties from Faifa Mountains in Saudi Arabia. Genes (Basel). 2023; 14. DOI: 10.3390/genes14020469.

5. Bare NB, Jadhav PS, Ponnuchamy M. DNA barcoding for species identification and phylogenetic investigation employing five genetic markers of Withania coagulans. J Appl Biol Biotechnol. 2023; 12: 69-76. DOI: 10.7324/jabb.2023.145330.

6. Shen Z, Lu T, Zhang Z, Cai C, Yang J, Tian B. Authentication of traditional Chinese medicinal herb “Gusuibu” by DNA-based molecular methods. Ind Crops Prod. 2019; 141. DOI: 10.1016/j.indcrop.2019.111756.

7. Iqbal A, Ur Rehman MZ. Characterization, Amplification, and Phylogenetic Analysis of Gossypium herbaceum Using rbcL Molecular Marker. Pak Biomed J. 2023; 6: 09-16. DOI: 10.54393/pbmj.v6i05.891.

8. Malik S, Priya A, Babbar SB. Employing barcoding markers to authenticate selected endangered medicinal plants traded in Indian markets. Physiol Mol Biol Plants. 2019; 25: 327-337. DOI: 10.1007/s12298-018-0610-8.

9. Malu Q, Caldeira GI, Catarino L, Indjai B, da Silva IM, Lima B, Silva O. Ethnomedicinal, Chemical, and Biological Aspects of Lannea Species-A Review. Plants (Basel). 2024; 13: 1-24. DOI: 10.3390/plants13050690.

10. Maroyi A. Lannea microcarpa: A Review of its Medicinal Uses, Phytochemistry and Pharmacological Properties. J Pharm Nutr Sci. 2018; 8: 168-177.

11. Mbaoji FN, Behnisch-Cornwell S, Ezike AC, Nworu CS, Bednarski PJ. Pharmacological Evaluation of the Anticancer Activity of Extracts and Fractions of Lannea barteri Oliv. (Anacardiaceae) on Adherent Human Cancer Cell Lines. Molecules. 2020; 25: 1-19. DOI: 10.3390/molecules25040849.

12. Garba K, Yaro AH, Ya'u J. Anticonvulsant effects of ethanol stem bark extract of Lannea barteri (Anacardiaceae) in mice and chicks. J Ethnopharmacol. 2015; 172: 227-231. DOI: 10.1016/j.jep.2015.06.039.

13. Osafo N, Boakye YD. A Review: Ethnomedicinal, Phytochemical and Pharmacological Investigations of Lannea welwitschii (Hiern) Engl. J Adv Med Pharm. 2016; 11: 1-10.

14. Nitiema M, Soleti R, Koffi C, Belemnaba L, Mallegol P, Ouedraogo N, Kini FB, Ouedraogo S, Guissou IP, Andriantsitohaina R. Ethyl Acetate Fraction of Lannea microcarpa Engl. and K. Krause (Anacardiaceae) Trunk Barks Corrects Angiotensin II-Induced Hypertension and Endothelial Dysfunction in Mice. Oxid Med Cell Longev. 2019; 2019: 1-13. DOI: 10.1155/2019/9464608.

15. Alaklabi A, Ahamed A, Al Qthanin RN, Arif IA, Panneerselvam A, Al-Khulaidi AW. Molecular characterization of endangered endemic plant Aloe pseudorubroviolacea using chloroplast matK and plastid rbcL gene. Saudi J Biol Sci. 2021; 28: 1123-1127. DOI: 10.1016/j.sjbs.2020.11.042.

16. Thakur VV, Tiwari S, Tripathi N, Tiwari G. Molecular identification of medicinal plants with amplicon length polymorphism using universal DNA barcodes of the atpF-atpH, trnL and trnH-psbA regions. 3 Biotech. 2019; 9: 188. DOI: 10.1007/s13205-019-1724-6.

17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729. DOI: 10.1093/molbev/mst197.

18. Ismail M, Ahmad A, Nadeem M, Javed MA, Khan SH, Khawaish I, Sthanadar AA, Qari SH, Alghanem SM, Khan KA, Khan MF, Qamer S. Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi J Biol Sci. 2020; 27: 3735-3742. DOI: 10.1016/j.sjbs.2020.08.020.

19. Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep. 2017; 7: 12564. DOI: 10.1038/s41598-017-13057-0.

20. Letsiou S, Madesis P, Vasdekis E, Montemurro C, Grigoriou ME, Skavdis G, Moussis V, Koutelidakis AE, Tzakos AG. DNA Barcoding as a Plant Identification Method. Appl Sci. 2024; 14. DOI: 10.3390/app14041415.

21. Maloukh L, Kumarappan A, Jarrar M, Salehi J, El-Wakil H, Rajya Lakshmi TV. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech. 2017; 7: 144. DOI: 10.1007/s13205-017-0746-1.

22. Ho VT, Tran TKP, Vu TTT, Widiarsih S. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. J Genet Eng Biotechnol. 2021; 19: 93. DOI: 10.1186/s43141-021-00188-1.

23. Jamdade R, Mosa KA, El-Keblawy A, Al Shaer K, Al Harthi E, Al Sallani M, Al Jasmi M, Gairola S, Shabana H, Mahmoud T. DNA Barcodes for Accurate Identification of Selected Medicinal Plants (Caryophyllales): Toward Barcoding Flowering Plants of the United Arab Emirates. Diversity. 2022; 14. DOI: 10.3390/d14040262.