The Effect of Substituting Fish Meal with Fermented Maggot Meal on the Growth Performance, Survival, and Molting Of Juvenile Spiny Lobster (Panulirus Homarus)
Main Article Content
Abstract
The availability of artificial feed with low price and high nutritional value is the main requirement for the sustainability of spiny lobster farming (Panulirus homarus). Therefore, this study aimed to explore the use of fermented maggot meal as a partial fishmeal substitute in the diet of P. homarus. Feeding experiment was conducted for 60 days using 12 rectangular plastic containers (46 L capacity) containing 20 lobster (1.5-3.5 cm size). A total of 4 treatments were tested to assess the effects of fermented maggot meal (P1: 10%, P2: 15%, P3: 20%, P4: 25%) on growth, feed conversion, molting, and survival. The results showed that the water quality parameters were within the range in support of spiny lobster aquaculture. Lobster growth performance outcomes based on absolute weight, length, and specific growth rate in the P1 treatment were 1.93 ± 0.13, 1.65 ± 0.09, and 0.98±0.11, while the values of P2 treatment were 1.72 ± 0.23, 1.63 ± 0.13, and 0.85±0.03, respectively. P3 treatment had values of 1.83 ± 0.08, 1.64 ± 0.25, and 0.90±0.13, while P4 had values of 1.07 ± 0.20, 1.69 ± 0.08, and 0.64±0.27, respectively. Substitution of fishmeal by fermented maggot meal showed no statistically significant differences (P<0.05) in growth performance between P1 to P4. However, at a 25% substitution level, body weight growth, feed conversion ratio, survival, and molting frequency decreased, showing reduced feed efficiency. In conclusion, the use of fermented maggot within optimal limits can be a sustainable and cost-effective alternative to fishmeal in P. homarus diets.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Akmal Y, Irfannur I, Muliari M, Yunus M, Plumeriastuti H, Dhamayanti Y, Batubara AS. Identification and productivity of lobster catching (Panulirus spp) in Aceh Jaya. IOP Conf Ser: Earth Environ Sci. 2023;1221(1):012006. Doi:10.1088/1755-1315/1221/1/012006 DOI: https://doi.org/10.1088/1755-1315/1221/1/012006
2. Macusi ED, Cayacay MA, Borazon EQ, Sales AC, Habib A, Fadli N, Santos MD. Protein Fishmeal Substitution in Aquaculture: A Systematic Review and Implications on Growth and Adoption Viability. Sustainability. 2023;15(16):12500. Doi:10.3390/su151612500 DOI: https://doi.org/10.3390/su151612500
3. Miles RD, Chapman FA. The Benefits of Fishmeal in Aquaculture Diets. Ask IFAS - Powered by EDIS. March 2024. Accessed November 12, 2024. https://edis.ifas.ufl.edu/publication/FA122
4. Tacon AGJ, Metian M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Fish Sci Aquac. 2015;23(1):1-10. Doi:10.1080/23308249.2014.987209 DOI: https://doi.org/10.1080/23308249.2014.987209
5. Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014;422-423:193-201. Doi:10.1016/j.aquaculture.2013.12.024 DOI: https://doi.org/10.1016/j.aquaculture.2013.12.024
6. Predescu NC, Stefan G, Rosu MP, Papuc C. Fermented Feed in Broiler Diets Reduces the Antinutritional Factors, Improves Productive Performances and Modulates Gut Microbiome—A Review. Agriculture. 2024;14(10):1752. Doi:10.3390/agriculture14101752 DOI: https://doi.org/10.3390/agriculture14101752
7. Makkar HPS, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol. 2014;197:1-33. Doi:10.1016/j.anifeedci.2014.07.008 DOI: https://doi.org/10.1016/j.anifeedsci.2014.07.008
8. Sihombing SM, Yunilas, Mirwandhono E. Maggot Production in Various Organic Wastes (Vegetables, Fruits, Food Processing Industries): Potential as Alternative Feed Substitutes for Fish Meal. J Peternak Integr. 2022;10(2):111-116. Doi:10.32734/jpi.v10i2.9231 DOI: https://doi.org/10.32734/jpi.v10i2.9231
9. Gbai M, Ouattara N, Bamba Y, Ouattara M, Ouattara A, Yao K. Substitution of the fish meal by the earthworm and maggot meal in the feed of Nile tilapia Oreochromis niloticus reared in freshwater. Int J Fish Aquac. 2018;10(6):77-85. Doi:10.5897/IJFA2018.0682 DOI: https://doi.org/10.5897/IJFA2018.0682
10. Li X, Yang L, Jiang S, et al. Effect of Fly Maggot Protein as Dietary on Growth and Intestinal Microbial Community of Pacific White Shrimp Litopenaeus vannamei. Biology. 2023;12(11):1433. doi:10.3390/biology12111433 DOI: https://doi.org/10.3390/biology12111433
11. Okta NC, Azhar F, Scabra AR, Syukur A, Amin M, Faturrahman F. Growth Performance of Scalloped Spiny Lobster (Panulirus homarus) Given Artificial Feed Based on Chicken Eggs Hatching Waste. J Kelaut Trop. 2023;26(2):315-328. Doi:10.14710/jkt.v26i2.17609 DOI: https://doi.org/10.14710/jkt.v26i2.17609
12. Anggraini W. THE EFFECT OF FEEDING SNAILS ON THE GROWTH AND SURVIVAL OF SAND LOBSTER (Panulirus homarus). 2018. Accessed February 12, 2025. https://www.semanticscholar.org/paper/PENGARUH-PEMBERIAN-PAKAN-KEONG-MAS-TERHADAP-DAN-THE-Anggraini/fbf317ae94ad4405bfd1e1075180d9e7a2d6a5ed
13. Achmad M, Widarma IGS, Fadilah MN, Ramadhan R, Putri SA. The Effect of Adding Egg Shells to Moist Feed on The Specific Growth and Survival Rate of Lobster Panulirus sp. Torani. 2021:41-50. Doi:10.35911/torani.v5i1.18738 DOI: https://doi.org/10.35911/torani.v5i1.18738
14. Partini P, Ahlina HF, Harahap SR. Growth and survival performance of redclaw (Cherax quadraciantus) through different frequencies of feeding formulations. Simbiosa. 2022;8(2):109-121. DOI: https://doi.org/10.33373/sim-bio.v8i2.2028
15. Tumwesigye Z, Tumwesigye W, Opio F, Kemigabo C, Mujuni B. The Effect of Water Quality on Aquaculture Productivity in Ibanda District, Uganda. Aquac J. 2022;2(1):23-36. Doi:10.3390/aquacj2010003 DOI: https://doi.org/10.3390/aquacj2010003
16. Amali I, Wulan Sari PD. Growth Performance of Cultivated Spiny Lobster (Panulirus homarus, Linnaeus 1758) in Tuban, East Java, Indonesia. Egypt J Aquat Biol Fish. 2020;24(3):381-388. Doi:10.21608/ejabf.2020.92321 DOI: https://doi.org/10.21608/ejabf.2020.92321
17. Tippayadara N, Dawood MAO, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M. Substitution of Fish Meal by Black Soldier Fly (Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. Animals. 2021;11(1):193. Doi:10.3390/ani11010193 DOI: https://doi.org/10.3390/ani11010193
18. Ogunji JO, Iheanacho SC, Mgbabu CN, Amaechi NC, Evulobi OOC. Housefly Maggot Meal as a Potent Bioresource for Fish Feed to Facilitate Early Gonadal Development in Clarias gariepinus (Burchell,1822). Sustainability. 2021;13(2):921. Doi:10.3390/su13020921 DOI: https://doi.org/10.3390/su13020921
19. Hua K. A meta-analysis of the effects of replacing fish meal with insect meal on growth performance of fish. Aquaculture. 2021;530. Doi:10.1016/j.aquaculture.2020.735732 DOI: https://doi.org/10.1016/j.aquaculture.2020.735732
20. Anik Martinah Hariati AMH, Ating Yuniarti AY, Nasrullah Bai Arifin NBA, Muhammad Fakhri MF, Dewa Gede Raka Wiadnya DGRW. The Effect of Maggot Formulated Feed on Essential Amino Acids Composition, Digestibility and Growth of Dwarf Snakehead, Channa gachua Fry. J Sains Malays. 2022;51(10):3143-3151. Doi:10.17576/jsm-2022-5110-02 DOI: https://doi.org/10.17576/jsm-2022-5110-02
21. Amanda DM, Azhar F, Scabra AR, Syukur A, Amin M, Faturrahman F. Effect of Feeding from Chicken Egg Hatching Waste on Sand Lobster Maintenance Media. J Sains Teknol Lingkung. 2024;10(1):95-107. Doi:10.29303/jstl.v10i1.604 DOI: https://doi.org/10.29303/jstl.v10i1.604
22. Habibie MR, Yustiati A, Haetami K, Suryadi IB. Growth Performance of Mutiara Catfish (Clarias gariepinnus) Fed a Combination of Commercial Feed and Black Soldier Fly Maggot (Hemetia illucens). Asian J Fish Aquat Res. 2020:27-36. Doi:10.9734/ajfar/2020/v9i430168 DOI: https://doi.org/10.9734/ajfar/2020/v9i430168
23. Islam MS, Agustono, Lamid M. The maggot flour substitution potency (Hermetia illucens) in artificial feed formulation on growth and survival rates of African catfish (Clarias gariepinus). IOP Conf Ser: Earth Environ Sci. 2020;441(1):012016. Doi:10.1088/1755-1315/441/1/012016 DOI: https://doi.org/10.1088/1755-1315/441/1/012016
24. Hasan I, Gai F, Cirrincione S, Rimoldi S, Saroglia G, Terova G. Chitinase and Insect Meal in Aquaculture Nutrition: A Comprehensive Overview of the Latest Achievements. Fishes. 2023;8(12):607. Doi:10.3390/fishes8120607 DOI: https://doi.org/10.3390/fishes8120607
25. Hameed A, Majeed W, Naveed M, Ramzan U, Bordiga M. Success of Aquaculture Industry with New Insights of Using Insects as Feed: A Review. Fishes. 2022;7(6):395. Doi:10.3390/fishes7060395 DOI: https://doi.org/10.3390/fishes7060395
26. Yuan Y, Jin M, Fang F, Tocher DR, Betancor MB, Jiao L, Hong Y, Zhou Q. New Insight Into the Molting and Growth in Crustaceans: Regulation of Energy Homeostasis Through the Lipid Nutrition. Front Mar Sci. 2022;9. Doi:10.3389/fmars.2022.914590 DOI: https://doi.org/10.3389/fmars.2022.914590
27. Ren X, Wang Q, Shao H, Xu Y, Liu P, Li J. Effects of Low Temperature on Shrimp and Crab Physiology, Behavior, and Growth: A Review. Front Mar Sci. 2021;8. Doi:10.3389/fmars.2021.746177 DOI: https://doi.org/10.3389/fmars.2021.746177
28. Gao Y, Zhang X, Wei J, Sun X, Yuan J, Li F, Xiang J. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei. PLoS One. 2015;10(12):e0144350. Doi:10.1371/journal.pone.0144350 DOI: https://doi.org/10.1371/journal.pone.0144350
29. Ali B, . A, Mishra A. Effects of dissolved oxygen concentration on freshwater fish: A review. Int J Fish Aquat Stud. 2022;10:113-127. Doi:10.22271/fish.2022.v10.i4b.2693 DOI: https://doi.org/10.22271/fish.2022.v10.i4b.2693
30. Huang D, Liang H, Zhang Z, Wen C. The effect of temperature on the survival, food intake, molting, and growth of Panulirus homarus. Acta Eco Sin. 2017;37(18):5973-5980. Doi:10.5846/stxb201606251247 DOI: https://doi.org/10.5846/stxb201606251247
31. Supriyono E, Adiyana K, Thesiana L. A Study of Environmentally Friendly Recirculating Aquaculture System on Lobster Panulirus homarus Nursery. Pol J Environ Stud. 2023;32(5):4805-4811. Doi:10.15244/pjoes/166596 DOI: https://doi.org/10.15244/pjoes/166596
32. Hepshen L. Ensuring Larval Development through Proper Water Quality Management. J Aquac Res Dev. 2024;15(7):1-2. Doi:10.35248/2155-9546.24.15.895
33. Baker J, Matheson G, Gilron G, DeForest D. Evaluation Of Sublethal Toxicity Of Nitrite To A Suite Of Aquatic Organisms In Support Of The Derivation Of A Chronic Environmental Water Quality Benchmark. Arch Environ Contam Toxicol. 2022. Doi:10.21203/rs.3.rs-1455333/v1 DOI: https://doi.org/10.21203/rs.3.rs-1455333/v1
34. Bermudes M, Ritar AJ. Tolerance for Ammonia in Early Stage Spiny Lobster (Jasus edwardsii) Phyllosoma Larvae. J Crustac Biol. 2008;28(4):695-699. Doi:10.1651/08-2994.1 DOI: https://doi.org/10.1651/08-2994.1


