Bioactive Metabolites from Aristolochia navicularis of Souk Ahras: Therapeutic Insights
Main Article Content
Abstract
Aristolochia navicularis is extensively utilized in traditional medicine for its various pharmacological attributes; however, no research has been undertaken on A. navicularis, a species indigenous to Algeria and historically employed for its medicinal benefits. This study investigates the bioactive compounds and biological activities of different extracts of Aristolochia navicularis (A. navicularis) sourced from Souk Ahras, Algeria, using high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and various bioactivity assays. HPLC analysis revealed solvent-dependent extraction profiles, with the n-butanol extract being rich in ascorbic acid (39.7%), while ethyl acetate provided a broader range of compounds, including caffeic acid, p-coumaric acid, and acetylsalicylic acid. GC-MS analysis showed a variety of compounds across hydroalcoholic, petroleum ether, and dichloromethane extracts, with notable molecules such as exaltolide and hexadecanoic acid in the hydroalcoholic extract, and hydrocarbons like dodecane and hexadecane in the petroleum ether extract, indicating potential uses in cosmetics and pharmaceuticals. The total phenolic content was highest in the n-butanol extract (156.45 µg GAE/mg), followed by ethyl acetate (127.23 µg GAE/mg). Regarding antioxidant activity, the n-butanol fraction exhibited significant DPPH scavenging potential (IC50 = 196.15 µg/mL), while the chloroform fraction was the most effective in the β-carotene bleaching assay (IC50 = 158.37 µg/mL). In terms of anticholinesterase activity, the crude extract and chloroform fraction exhibited strong inhibition of butyrylcholinesterase (BChE), with IC50 values of 16.75 and 15.98 µg/mL, respectively. These findings underscore the diverse bioactive potential of A. navicularis, suggesting its suitability for various applications in pharmaceuticals, cosmetics, and industrial products.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Meddour R, Ouahiba S, Stephen J. New analysis of the endemic vascular plants of Algeria, their diversity, distribution pattern and conservation status. Willdenowia. 2023; 53(1–2):25–43. DOI: https://doi.org/10.3372/wi.53.53102
2.Zahnit W, Smara O, Bechki L, Bensouici C, Messaoudi M, Benchikha N, Larkem I, Awuchi CG, Sawicka B. and Simal-Gandara J. Phytochemical profiling, mineral elements, and biological activities of Artemisia campestris L. grown in Algeria. Horticulturae. 2022; 8(10), 914. DOI: https://doi.org/10.3390/horticulturae8100914
3.Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, Aviña-Verduzco J, García-Gutiérrez HA. Biological activities of organic extracts of the genus Aristolochia: a review from 2005 to 2021. Molecules. 2022; 20;27(12):3937. DOI: https://doi.org/10.3390/molecules27123937
4.Sana SH. A comprehensive review of the pharmacological potential of Aristolochia longa Linn. Eur J Pharm Med Res. 2020; 7:366–368.
5.Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MS. Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2—A global assessment based on bibliographic sources. J Ethnopharmacol. 2009; 125(1):108–144. DOI: https://doi.org/10.1016/j.jep.2009.05.028
6.Sureshkumar J, Silambarasan R, Ayyanar M. An ethnopharmacological analysis of medicinal plants used by the Adiyan community in Wayanad district of Kerala, India. Eur J Integr Med. 2017; 12:60–73. DOI: https://doi.org/10.1016/j.eujim.2017.04.006
7.El Idrissi AEY, Khouchlaa A, Bouyahya A, Bakri Y, Tijane MH. Phytochemical characterization, in vitro antioxidant, cytotoxic, and antibacterial effects of Aristolochia longa L. Biointerface Res Appl Chem. 2021; 11:8129–8140. DOI: https://doi.org/10.33263/BRIAC111.81298140
8.Mansouri LM, Kheloufi A, Boukhecha M. Aristolochia baetica L. (Aristolochiaceae): New records of rare medicinal species from Northwestern Algeria. Contemp Agric. 2022; 72(1–2):82–88. DOI: https://doi.org/10.2478/contagri-2023-0011
9.Hemmami H, Seghir B, Zeghoud BB, Ben Amor S, Kouadri I, Rebiai I, Zaater A, Messaoudi M, Benchikha N, Sawicka B, Atanassova M. Desert endemic plants in Algeria: A review on traditional uses, phytochemistry, polyphenolic compounds and pharmacological activities. Molecules. 2023; 28(4):1834. DOI: https://doi.org/10.3390/molecules28041834
10.Romayssa B, Nabiha B, Noureddine Z. Phytochemical characterization of hydroponic naked barley, analysis of antioxidant potential. Indian J Agric Res. 2024; 58(1). DOI: https://doi.org/10.18805/IJARe.AF-768
11.Babushok V, Linstrom P, Zenkevich I. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. 2011; 40(4):43101–43148. DOI: https://doi.org/10.1063/1.3653552
12.Adams R. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publ Corp. 2007.
13.Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16(3):144–158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144
14.Topçu G, Ay M, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007; 103(3):816–822. DOI: https://doi.org/10.1016/j.foodchem.2006.09.028
15.Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181(4617):1199–1200. DOI: https://doi.org/10.1038/1811199a0
16.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9–10):1231–1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
17.Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004; 52(26):7970–7981. DOI: https://doi.org/10.1021/jf048741x
18.Oyaizu M. Antioxidative activities of browning reaction prepared from glucosamine. J Nutr Sci Vitaminol (Tokyo). 1986; 44:307–315. DOI: https://doi.org/10.5264/eiyogakuzashi.44.307
19.Shi H, Noguchi N, Niki E. Galvinoxyl method for standardizing electron and proton donation activity. In: Methods in Enzymology. Elsevier; 2001:157–166. DOI: https://doi.org/10.1016/S0076-6879(01)35240-0
20.Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008; 76(4):899–905. DOI: https://doi.org/10.1016/j.talanta.2008.04.055
21.Marco GJ. A rapid method for evaluation of antioxidants. J Am Oil Chem Soc. 1968; 45(9):594–598. DOI: https://doi.org/10.1007/BF02668958
22.Özyürek M, Güngör N, Baki S, Güllü K, Apak R. Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem. 2012; 84(18):8052–8059. DOI: https://doi.org/10.1021/ac301925b
23.Gali L, Bedjou F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions, and total alkaloids from the cultivated Ruta chalepensis. S Afr J Bot. 2019; 120:163–169. DOI: https://doi.org/10.1016/j.sajb.2018.04.011
24.Merouani N, Belhattab R, Sahli F. Evaluation of the biological activity of Aristolochia longa L. extracts. Int J Pharm Sci Res. 2017; 8(5):1978–1992.
25.Ozen T, Bora N, Yenigun S, Korkmaz H. An investigation of chemical content, enzyme inhibitory property, antioxidant, and antibacterial activity of Aristolochia bodamae Dingler (develiotu) (Aristolochiaceae) root extracts from Samsun, Turkey. Flavour Fragr J. 2020; 35(3):270–283. DOI: https://doi.org/10.1002/ffj.3559
26.Bourhia M, Laasri FE, Moussa SI, Ullah R, Bari A, Saeed Ali S, Kaoutar A, Haj Said AA, El Mzibri M, Said G. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two Moroccan Aristolochia species. Evid Based Complement Alternat Med. 2019; 2019:9710876. DOI: https://doi.org/10.1155/2019/9710876
27.Taha M, Parveen B, Osman B, Abdoon IH, Mohamed MS, Osman WJA, Ahmad S. In vitro profiling of plants used in Sudanese traditional medicine for antioxidant and anti-breast cancer activities. Ann Phytomed. 2019; 8:119–126. DOI: https://doi.org/10.21276/ap.2019.8.1.15
28.Navarro-García VM, Luna-Herrera J, Rojas-Bribiesca MG, Álvarez-Fitz P, Ríos MY. Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules. 2011; 16:7357–7364. DOI: https://doi.org/10.3390/molecules16097357
29.Xin W, Guo-Ru S, Yan-Fei L, Li L, Ruo-Yun C, De-Quan Y. Aristolochic acid derivatives from the rhizome of Aristolochia championii. Fitoterapia. 2017; 118:63–68. DOI: https://doi.org/10.1016/j.fitote.2017.01.006
30.Mohanraj R, Patil A, Rathore M, Nobre M. AntiHIV-1 and anti-bacterial activities of the leaf extracts of Aristolochia elegans. J Trop Med Plants. 2009; 10:9–12.
31.Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Hernández-Hernández JD, Aviña-Verduzco J, García-Gutiérrez HA. In vitro cytotoxic potential of extracts from Aristolochia foetida Kunth against MCF-7 and bMECs cell lines. Saudi J Biol Sci. 2021; 28:7082–7089. DOI: https://doi.org/10.1016/j.sjbs.2021.08.007
32.Alali FQ, Tawaha K, Shehadeh MB, Telfah S. Phytochemical and biological investigation of Aristolochia maurorum L. Z Nat C. 2006; 61:685–691. DOI: https://doi.org/10.1515/znc-2006-9-1013
33.Yu JQ, Liao ZX, Cai XQ, Lei JC, Zou GL. Composition, antimicrobial activity, and cytotoxicity of essential oils from Aristolochia mollissima. Environ Toxicol Pharmacol. 2007; 23:162–167. DOI: https://doi.org/10.1016/j.etap.2006.08.004
34.Truong LH, Cuong NH, Dang TH, Hanh NTM, Thi VL, Tran Thi Hong H, Tran Hong Q, Nguyen HD, Nguyen Xuan C, Nguyen Hoai N. Cytotoxic constituents from Isotrema tadungense. J Asian Nat Prod Res. 2020; 23:491–497. DOI: https://doi.org/10.1080/10286020.2020.1739661
35.León-Díaz R, Meckes-Fischer M, Valdovinos-Martínez L, Campos MG, Hernández-Pando R, Jiménez-Arellanes MA. Antitubercular activity and the subacute toxicity of (−)-Licarin A in BALB/c mice: A neolignan isolated from Aristolochia taliscana. Arch Med Res. 2013; 44:99–104. DOI: https://doi.org/10.1016/j.arcmed.2012.12.006
36.Lan-Lan L, Wei L, Bin-Hua Z, Li C, Han-Zhuang W, Yin-Hong Z, Gui-Hua T, Xian-Zhang B, Sheng Y. (+)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/small mother against decapentaplegic signaling pathway: Anti-cardiac fibrosis sesquiterpenoids from Aristolochia yunnanensis. Phytother Res. 2019; 33:214–223. DOI: https://doi.org/10.1002/ptr.6219
37.Xiao-dan S, Yang G, Ying-Xin X, Peng-Xiang L, Xiang X. Chemical composition and biological activities of the essential oil from Aristolochia fordiana Hemsl. Rec Nat Prod. 2019; 13:346–354. DOI: https://doi.org/10.25135/rnp.111.18.09.897
38.Zhong-bo Z, Jian-guang L, Ke P, Si-ming S, Wei Z, Ling-yi K. Bioactive benzofuran neolignans from Aristolochia fordiana. Planta Med. 2013; 79:1730–1735. DOI: https://doi.org/10.1055/s-0033-1351100
39.Gui-Hua T, Zi-Wei C, Ting-Ting L, Min T, Xiao-Yun G, Jing-Mei B, Zhong-Bin C, Zhang-Hua S, Gang H, Sheng Y. Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 cells. J Nat Prod. 2015; 78:1894–1903. DOI: https://doi.org/10.1021/acs.jnatprod.5b00220
40.Aleixo AA, Vidyleison NC, dos Santos Pereira Andrade AC, Marjorie K, Herrera S, Iara R, Ribeiro M, Magalhães Rodrigues LA, Ferreira JM. Antibacterial and cytotoxic antibacterial potential of ethanol extract and fractions from Aristolochia galeata Mart. Ex Zucc. J Med Plants Res. 2014; 8:326–330. DOI: https://doi.org/10.5897/JMPR2013.5151
41.Padhy GK. A review of Aristolochia indica: Ethnomedicinal uses, phytochemistry, pharmacological, and toxicological effects. Curr Trad Med. 2021; 7:372–386. DOI: https://doi.org/10.2174/2215083806666200831173828
42.Aneb M, Talbaoui A, Bouyahya A, Boury H, Amzazi S, Benjouad A, Dakka N, Bakri Y. In vitro cytotoxic effects and antibacterial activity of Moroccan medicinal plants Aristolochia longa and Lavandula multifida. Eur J Med Plants. 2016; 16:1–13. DOI: https://doi.org/10.9734/EJMP/2016/28534
43.Benarba B, Pandiella A, Elmallah A. Anticancer activity, phytochemical screening, and acute toxicity evaluation of an aqueous extract of Aristolochia longa L. Int J Pharm Phytopharmacol Res. 2017; 6:20. DOI: https://doi.org/10.24896/eijppr.2016614
44.Attou S, Meddah B, Tir Touil Meddah A, Mokhtar M, Sonnet P. Phytochemical screening and antioxidant activity of Algerian Aristolochia longa flavonoids. J Appl Biotechnol Rep. 2020; 7(3):166–170.
45.Mariyammal V, Sathiageetha V, Amalraj S, Gurav SS, Amiri-Ardekani E, Jeeva S, Ayyanar M. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J Indian Chem Soc. 2023; 100(1):100807. DOI: https://doi.org/10.1016/j.jics.2022.100807
46.Kobus-Cisowska J, Szczepaniak O, Szymanowska-Powałowska D, Piechocka J, Szulc P, Dziedziński M. Antioxidant potential of various solvent extracts from Morus alba fruits and its major polyphenol composition. Ciênc Rural. 2019; 50(1): e20190371. DOI: https://doi.org/10.1590/0103-8478cr20190371
47.El Omari N, Sayah K, Fettach S, El Blidi O, Bouyahya A, Faouzi MEA, Kamal R, Barkiyou M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid Based Complement Alternat Med. 2019; 2019:7384735. DOI: https://doi.org/10.1155/2019/7384735
48.Khan I, Ullah Z, Shad AA, Fahim M, Öztürk M. In vitro antioxidant, anticholinesterase inhibitory, and antimicrobial activity studies of Terminalia chebula (Retz) and Terminalia arjuna (Roxb). S Afr J Bot. 2022; 146:395–400. DOI: https://doi.org/10.1016/j.sajb.2021.11.016
49.Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis. 2002; 9(1):88–93. DOI: https://doi.org/10.1006/nbdi.2001.0462


