Phytochemical Study and Evaluation of Antioxidant and Alpha-amylase Inhibitory Activities of Acacia nilotica (L.) Stem-Eark Extracts

Main Article Content

Seide M. Akoro
Mutiat O. Omotayo
Sunday O. Ajibade
Afeez A. Ogunbo
Rebecca T. Oriowo

Abstract

Historically, plants have helped man in the healing and treatment of various diseases. Acacia nilotica is a plant used in the treatment of inflammatory conditions, Diabetes mellitus, and certain types of cancer. In this work, we investigated the antioxidant and alpha-amylase inhibitory activities of the crude methanol extract, fractions, and flavonoid extract of A. nilotica stem bark, as well as determined the flavonoid and volatile compound content of the crude extracts. The powdered stem bark was soaked in methanol for 72 h, and the resulting extract was partitioned using n-hexane and ethyl acetate to yield the fractions. The quantity of flavonoids of the plant was determined, and the crude extracts and fractions were screened for secondary metabolites. The reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay protocols were explored for antioxidant studies. Alpha-amylase inhibitory activity was determined preliminarily using the starch–iodine test. High-Performance Liquid Chromatography (HPLC) determined the flavonoid constituents, while Gas Chromatography-Mass Spectrometry (GC-MS) determined the volatile compound constituents. All the extracts contain alkaloids, tannins, saponins, cardiac glycosides, terpenoids, steroids, and anthraquinones. Reducing power and DPPH activities, which increase with concentration, were observed in the crude methanol extract (ANSM). The results are significantly similar (p>0.05) to ethyl acetate (ANSME), residual methanol fractions (ANSMR), and flavonoid extract (ANBF). ANSM, ANSMR and ANBF indicated positive alpha-amylase inhibitory activity. HPLC identified quercetin and other polyphenols, while GC-MS identified several volatile compounds with medicinal relevance. These results support the traditional uses of A. nilotica and may be a possible source of pharmacologically active compounds.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Phytochemical Study and Evaluation of Antioxidant and Alpha-amylase Inhibitory Activities of Acacia nilotica (L.) Stem-Eark Extracts. (2025). Tropical Journal of Natural Product Research , 9(11), 5779 – 5794. https://doi.org/10.26538/tjnpr/v9i11.69

References

1. Riaz M, Khalid R, Afzal M, Anjum F, Fatima H, Zia S, Rasool G, Egbuna C, Mtewa AG, Uche CZ, Aslam MA. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci Nutr. 2023; 11 (6):2500-2529. https://doi.org/10.1002/ fsn3.3308.

2. Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, Singh D, Usman UJ, Ukwuani-Kwaja AN, Muhammad A, Ahmed SJ, Folami SO, Falana MB, Nurudeen QO. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med. 2022; 49:102094. https://doi.org/10.1016/j.eujim.2021.102094.

3. Iheanacho CM, Akubuiro PC, Oseghale IO, Imieje VO, Erharuyi O, Ogbeide KO, Jideonwo AN, Falodun A. Evaluation of the Antioxidant Activity of the Stem Bark Extracts of Anacardium occidentale (Linn) Anacardiaceae. Trop J Phytochem Pharm. Sci. 2023; 2 (2):65-69. https://doi.org/10.26538/tjpps/v2i2.4.

4. Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R. The application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Transfus. Med. 2015; 66: 635-642. https://doi.org/10.4236/ijcm.2015.69084.

5. Singh A. Exotic flora of the Chandauli district, Uttar Pradesh, India: an overview. Indian J. For. 2012; 35 (1): 79-84. https://doi.org/10.54207/bsmps1000-2012-RSIG24.

6. Rather LJ, Islam S, Mohammad F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm. 2015; 2:12-30. https://doi.org/10.1016/j.scp.2015. 08.002.

7. Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica and Eugenia jambolana Lam. trees. Food Chem. 2007; 104 (3): 1106-1114. https:/doi.org/10.1016/j.food chem.2007.01.019.

8. Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB. Antioxidant and anti-quorum-sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol. 2009; 47 (4):778-786. https://doi.org/10.1016/j.fct.2009.01.009.

9. Singh BN, Singh BR, Sarma BK, Singh HB. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact. 2009; 181(1):20-28. https://doi.org./10.1016/j.cbi.2009.05.007.

10. Del WE. In vitro evaluation of peroxyl radical scavenging capacity of water extract reactions of Acacia nilotica (L.). Afr. J. Biotechnol. 2009; 8 (7): 1270-1272.

11. Misar A, Bhagat R, Mujumdar AM. Antidiarrhoeal activity of Acacia nilotica Willd. Bark methanol extract. Hindustan Antibiot Bull. 2007; 49- 50 (1-4):14-20.

12. Akintunde TA, Babayi HM, Alfa S. Effect of Aqueous Extract of Acacia nilotica on Microbial and Castor Oil Induced Diarrhoea Nig J. Biotech. 2015; 29: 34-37. https://doi.org/10.4314/ njb.v29il.5.

13. Rehman NU, Ansari MN, Ahmad W, Amir M. GC-MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica. Molecules. 2022; 27 (7):2107. https://doi.org/10.3390/molecules27072107

14. Wassel GM, Abd-El-Wahab, SM, Aboutabl EA, Ammar NM, Afifi MS. Study of phenolic constituents and tannins isolated from Acacia nilotica L. Willd and Acacia farnesiana L. Willd growing in Egypt. Herba Hungarica. 1990: 29 (1-2): 43-50.

15. Rauf A, Ibrahim M, Alomar TS, AlMasoud N, Khalil AA, Khan M, Khalid A, Jan MS, Formanowicz D, Quradha MM. Hypoglycemic, anti-inflammatory, and neuroprotective potentials of crude methanolic extract from Acacia nilotica L. – results of an in vitro study. Food Sci. nutr. 2024; 12 (5): 3483-3491. https://doi.org/10.1002/fsn3.4017.

16. Bai S, Bharti P, Seasotiya L, Malik A, Dalal S. GC-MS analysis of chloroform extract of Acacia nilotica L. leaves. J Pharmacogn Phytochem. 2014: 2: 79-82.

17. Gupta AK, Bhat JL. GC-MS analysis of the methanol extract of Acacia nilotica (L.) Leaves. Int J Pharm Chem. 2016; 6 (2):50-53.

18. Janani M, Parimala T, Punithavathi VR, Mukesh J, Arulanandam A, Devipriya A. GC-MS Profiling and antibacterial activity of Acacia nilotica bark pertained aqueous extract. Res J Pharm Technol. 2024; 17 (12): 5931-5936. https://doi.org/10.52711/ 0974-360X.2024.00899.

19. Al-Lawati JA. Diabetes Mellitus: A Local and Global Public Health Emergency! Oman Med J. 2017; 32 (3):177-179. https://doi.org/10.5001/omj.2017.34.

20. Farag HFM, Elrewany E, Abdel-Aziz BF, Sultan EA. Prevalence and predictors of undiagnosed type 2 diabetes and pre-diabetes among adult Egyptians: a community-based survey. BMC Public Health. 2023; 23: 949. https://doi.org/10.1186/s12889-023-15819-0.

21. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of Diabetes mellitus. Nat Rev Endocrinol. 2022; 18 (9):525-539. https://doi.org/10.1038/s41574-022-00690-7.

22. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015; 6 (13):1246-1258. https://doi.org/10.4239/wjd.v6.i13.1246

23. Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, Jeffree MS. A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. Oxid Med Cell Longev. 2020; 2020:8878172. https://doi.org/10.1155/ 2020/ 8878172.

24. Okolie NP, Falodun A, Davids O. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and its potential for the inhibition of lipid peroxidation. Afr J Tradit Complement Altern Med. 2014; 11 (3):221-227. https://doi.org/10.4314/ajtcam.v11i3.31

25. Akoro SM, Omotayo MA, Ajibaye S, Dada F. Comparative Alpha-amylase Inhibitory Properties of the Leaf Extracts of Petiveria alliacea L. Chem. Sci. Int. J. 2017;19 (1):1-9. https://doi.org/10.9734/CSJI/2017/32528

26. Gafar MK, Okoye IF, Olatunji LK, Ahmad J, Umar AO, Ibrahim OS, Salim F, Ahmad R. The Volatile Constituents from Lepidium sativum and Tridax procumbens Shoots Exhibit Antimicrobial Effect and Inhibitory Activities Against α-Amylase Enzyme and 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical. Trop J Nat Prod Res. 2024;8(2):6433-6439. https://doi.org/10.26538/tjnpr/v8i2.35

27. Rijai AJ, Fidrianny I, S Sukrasno. Phytochemical and Screening of α-Glucosidase and α-Amylase Inhibitory Activities of Five Lit Sea Plants from East Borneo, Indonesia. Trop J Nat Prod Res. 2023;7(8):3666-3670. https://doi.org/10.26538/tjnpr/v7i8.15

28. Abu F, Mat Taib CN, Mohd Moklas MA, Mohd Akhir S. Antioxidant Properties of Crude Extract, Partition Extract, and Fermented Medium of Dendrobium sabin Flower. Evid Based Complement Alternat Med. 2017; 2017:2907219.

29. Ndayako HH, Muhammed HM, Salihu IM, Gabi UA, Yahaya I, Hamza UI, Aliyu AD. In vitro activity of methanol extracts of the root of Sarcocephalus latifolius (African peach) on Plasmodium falciparum. Sci. World J. 2024; 19 (2): 533-538. https://doi.org /10.4314/swj.v19i2.31.

30. Kolawole OT, Adeyeba OA, Awodele O, Wakeel OK, Ayankunle AA. Crude and Partition Extracts of Newbouldia laevis Leaves Attenuate Excitotoxin-induced Stereotypy in Mice. Euro. J. Med. Plants. 2020;31(18):29-36.

31. Ng KS, Mohd Zin Z, MohdMaidin N, Mamat H, Juhari NH, Zainol MK. High-performance liquid chromatography (HPLC) analysis for flavonoids profiling of Napier grass herbal tea. Food Res. 2021; 5(1): 65-71. https://doi.org/10.26656/fr.2017.5(1).311.

32. Mattila P, Astola J, Kumpulainen J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem. 2000; 48(12):5834-5841. https://doi.org/10.1021/jf000661f.

33. Bustamante-Pesantes KE, Miranda-Martínez M, Gutiérrez-Gaitén YI, Guaranda IA, Pesantes-Domínguez O, Fernández MC. Chemical Composition, Acute Oral Toxicity and Analgesic Activity of Hydroalcoholic Extracts of Mimusops coriacea (A.DC) Miq (Sapotaceae).Trop J Nat Prod Res. 2023;7 (4): 2688-2695. http://doi.org/10.26538/tjnpr/v7i4.3

34. Mizzi L, Chatzitzika C, Gatt R, Valdramidis V. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food Technol Biotechnol. 2020;58 (1):12-19. https://doi.org/ 10.17113/ftb.58.01.20.6395.

35. Elnour AAM, Mirghani MES, Kabbashi NA, Md Alam Z, Musa KH. Study of Antioxidant and Anti-Inflammatory Crude Methanol Extract and Fractions of Acacia seyal Gum. Am J Pharmacol Pharmacother. 2018; 5 (1:3): 1-11. https://doi.org/10.21767/2393-8862.100012.

36. Sofowora A. Medicinal plants and traditional medicine in Africa. (3rd ed.). Ibadan, Nigeria: Spectrum Books Ltd; 2008. 134-156 p.

37. Ezeonu CS, Ejikeme CM. Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. New J. Sci. 2016; (1): 5601327. https://doi.org/ 10.1155/2016/5601327

38. Farid M, Abdelgayed SS, Soliman MH, El-Fadhany M, Hussein RH. Polyphenolic and Flavonoids Content, HPLC Profiling and Antioxidant Activity of Some Medicinal Plants with Pancreatic Histological Study in Alloxan-induced Diabetic Rats Model. J Microbiol Biotech Food Sci. 2020; 9 (4): 746-750. https://doi.org/10.15414/jmbfs.2020.9.4.746-750

39. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull (Tokyo). 1988; 36 (6):2090-2097. https://doi.org/10.1248/cpb.36.2090

40. Omotayo MA, Akoro SM, Avungbeto MO, Uwakwe H. Evaluation of Free Radical Scavenging and Antibacterial Activity of Acalypha wilkesiana and Terminalia catappa Methanolic Leaf Extracts. Microbiol. Res. J. Int. 2017; 19 (3):1-9. https://doi.org/10.9734/Mrji/2017/32761

41. Sudha P, Zinjarde SS, Bhargava S, Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med. 2011; 11:5. https://doi.org/10.1186/ 1472-6882-11-5

42. George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel). 2021; 10 (9):1455. https://doi.org/10.3390/antiox10091455

43. Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023; 28 (2):887. https://doi.org/10.3390/molecules28020887

44. Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of Diabetes mellitus. J Diabetes Metab Disord. 2022; 21(1):941-950. https://doi.org/10.1007/s40200-021-00943-8

45. Sadiq MB, Hanpithakpong W, Tarning J, Anal AK. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Ind. Crops Prod. 2015; 77: 873-882. https://doi.org/10.1016/j.indcrop.2015.09.067

46. Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. LWT-Food Sci Technol. 2022; 171: 114162. https://doi.org/10.1016/j.lwt.2022.114162

47. Ramasar R, Naidoo Y, Dewir YH, El-Banna AN. Seasonal Change in Phytochemical Composition and Biological Activities of Carissa macrocarpa (Eckl.) A. DC. Leaf Extract. Horticulturae. 2022; 8(9):780. https://doi.org//10.3390/horticulturae8090780

48. Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharma. (Basel). 2023; 16 (7):1020. https://doi.org/10.3390/ph16071020

49. Deepika Maurya PK. Health Benefits of Quercetin in Age-Related Diseases. Molecules. 2022; 27 (8):2498. https://doi.org/10.3390/ molecules27082498

50. Semwal R, Joshi SK, Semwal RB, Semwal DK. Health benefits and limitations of rutin - A natural flavonoid with high nutraceutical value, Phytochem Lett. 2021; 46:119-128. https://doi.org/10.1016/j.phytol.2021.10.006

51. Bazyar H, Zare Javid A, Ahangarpour A, Zaman F, Hosseini SA, Zohoori V, Aghamohammadi V, Yazdanfar S, Ghasemi Deh Cheshmeh M. The effects of rutin supplement on blood pressure markers, some serum antioxidant enzymes, and quality of life in patients with type 2 Diabetes mellitus compared with placebo. Front Nutr. 2023; 10:1214420. https://doi.org/10.3389/fnut.2023. 1214420

52. Hadidi M, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel). 2024; 13 (8): 1001. https://doi.org/10.3390/antiox13081001

53. Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020; 4 (1): 1-10. https://doi.org/10.1186/s41702-020-0057-8

54. Hu X, Yang Z, Liu W, Pan Z, Zhang X, Li M, Liu X, Zheng Q, Li D. The Anti-tumour Effects of p-Coumaric Acid on Melanoma A375 and B16 Cells. Front Oncol. 2020; 10:558414. https://doi.org/10.3389/fonc.2020.558414

55. Tehami W, Nani A, Khan NA, Hichami A. New Insights into the Anticancer Effects of p-Coumaric Acid: Focus on Colorectal Cancer. Dose Response. 2023; 21 (1): 15593258221150704. https://doi.org/10.1177/15593258221150704

56. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol. 2018; 31 (6): 332-336. https://doi.org/10. 1159/000491755

57. Neto-Neves EM, da Silva Maia Bezerra Filho C, Dejani NN, de Sousa DP. Ferulic Acid and Cardiovascular Health: Therapeutic and Preventive Potential. Mini Rev. Med. Chem. 2021; 21:1625-1637. https://doi.org/10.2174/1389557521666210105122841

58. de Morais EF, de Oliveira LQR, Farias Morais HGd, Souto Medeiros MRd, Freitas RdA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers. 2024; 16 (3):585. https://doi.org/0.3390/cancers16030585

59. Bhaskar M and Aruma K. Assessment of the Antioxidant Capacity and Cytotoxic Activity of Ipomoea pes-tigridis. Trop J Nat Prod Res. 2024;8(8): 7965-7969. https://doi.org/10.26538/tjnpr/v8i8.5

60. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes. 2023; 11 (8): 2248. https://doi.org/10.3390/pr11082248

61. Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol (Tokyo). 2006; 52 (2):149-153. https://doi.org/10.3177/ jnsv.52.149

62. Yuan E, Liu B, Wei Q, Yang J, Chen L, Li Q. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors. Nat Prod Commun. 2014; 9 (8):1173-1176.

63. Lim J, Ferruzzi MG, Hamaker BR. Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem. 2022; 370:130981. https://doi.org/ 10.1016/ j.foodchem.2021.130981

64. Oboh G, Ademosun AO, Ayeni PO, Omojokun OS, Bello F. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comp Clin Path, 2015; 24 (5): 1103-1110. https://doi.org/10.1007/s00580-014-2040-5

65. Qin Y, Chen X, Xu F, Zhu K, Wang P, Zhang Y, Zhang Y. Pectin enhances the inhibition of α-amylase via the mixture of rutin and quercetin. Int. J. Biol. Macromol, 2024; 285: 138251. https://doi.org/10.1016/j.ijbiomac.2024.138251.

66. Akoro S, Ogundare OC, Oyedola A. Comparative GC-MS Analysis, Antioxidant and cytotoxic activities of Garcinia kola Heckel seed and stem-bark n-hexane extract. J. Med Herbs. 2023: 14 (2): 35-43.

67. Akoro SM, Ogundare OC, Ajibade SO, Awofeso DO. Phytochemical Investigation of Aristolochia ringens (Vahl.) n-hexane root extract using GC-MS and FTIR. Trop J Phytochem Pharm. Sci. 2025; 4(3) 111-122. https://doi.org/10.26538/tjpps/ v4i3.2

68. Ogunlesi M, Okiei W, Osibote E. Analysis of the essential oil from the leaves of Sesamum radiatum, a potential medication for male infertility factor, by gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2010; 9:1060-1067. https://doi.org/10.5897/AJBO9. 941

69. Olukanni OD, Abiola T, Olukanni AT, Ojo AV. Chemical Composition, In Silico and In Vitro Antimutagenic Activities of Ethanolic and Aqueous Extracts of Tigernut (Cyperus esculentus). Prev Nutr Food Sci. 2022; 27(2):198-211. https://doi.org/10.3746 /pnf.2022.27.2.198

70. Moronkola DO, Faruq UZ, Adigun OA, Ajiboye CO. Essential oil compositions of leaf, stem-bark, stem, root, flower, and fruit with seed of Blighia unijugata Baker (Sapindaceae). Afr. J. Pharm. Pharmacol. 2017; 11 (7): 108-119. https://doi.org/10.5897/ ajpp2016.4721

71. Panayides J, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med, Chem. 2024: 15: 3286-3344

72. Cheng MC, Ker YB, Yu TH, Lin LY, Peng RY, Peng CH. Chemical synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: a bioactive agent found in the essential oil of mountain celery seeds. J Agric Food Chem. 2010; 58 (3):1502-1508. https:// doi.org/10.1021/jf903573g

73. Chen J, Garcia EJ, Merritt CR, Zamora JC, Bolinger AA, Pazdrak K, Stafford SJ, Mifflin RC, Wold EA, Wild CT, Chen H, Anastasio NC, Cunningham KA, Zhou J. Discovery of Novel Oleamide Analogues as Brain-Penetrant Positive Allosteric Serotonin 5-HT2C Receptor and Dual 5-HT2C/5-HT2A Receptor Modulators. J Med Chem. 2023; 66 (14):9992-10009. https:// doi.org/ 10.1021/acs.jmedchem.3c00908.

74. Nam HY, Na EJ, Lee E, Kwon Y, Kim HJ. Antiepileptic and Neuroprotective Effects of Oleamide in Rat Striatum on Kainate-Induced Behavioral Seizure and Excitotoxic Damage via Calpain Inhibition. Front Pharmacol. 2017; 8: 817. https://doi.org/10.3389/ fphar.2017.00817.

75. Wattanalaorsomboon S, Mansalai P, Payaka A, Baiya S, Sansenya S. The inhibition effect of oleamide for acetylcholinesterase and α-glucosidase from edible wild mushroom by in vitro, in silico and fluorescence analysis. Int J Biol Macromol. 2025; 308 (Pt 4):142681. https://doi.org/10.1016/j.ijbiomac.2025.142681.

76. Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem. 2013; 13 (2):201-210.

77. Karacor K, Cam M. Effects of Oleic Acid. Med Sci Discov. 2015; 2: 125-132. https://doi.org/10.36472/msd.v2i1.53

78. Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients. 2019;11(10):2283. https://doi.org /10.3390/nu11102283.

79. Wechakorn K, Payaka A, Masoongnoen J, Wattanalaorsomboon S, Sansenya S. Inhibition potential of n-hexadecanoic and oleic acids from edible insects against α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: in vitro and in silico studies. J Sci Food Agric. 2025;105 (7):3701-3711. https://doi.org/10.1002/jsfa.14121

80. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012; 80(3):434-439. https://doi.org/10.1111/j.1747-0285.2012. 01418. x.

81. Lokesh R, Kannabiran K. Cytotoxic Potential of N-hexadecanoic Acid Extracted from Kigelia pinnata Leaves. Asian J. Cell Biol. 2017; 12: 20-27. https://doi.org/10.3923/ajcb.2017.20.27.

82. Purushothaman R, Vishnuram G, Ramanathan T. Antiinflammatory efficacy of n-Hexadecanoic acid from a mangrove plant Excoecaria agallocha L. Through in silico, in vitro and in vivo. Pharmacol. Res. - Nat. Prod. 2025; 7: 100203. https://doi.org/ 10.1016/j.prenap.2025.100203

83. Hata K, Hori K, Ogasawara H, Takahashi S. Anti-leukaemia activities of Lup-28-al-20(29)-en-3-one, a lupane triterpene. Toxicol Lett. 2003; 143: 1-7. https://doi.org/10.1016/S0378-4274 (03)00092-4

84. Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res. 2021; 164:105373. https://doi.org/ 10.1016/j.phrs.2020.105373.

85. Singh R and Chaturvedi P. Phytochemical characterization of rhizome, fruit, leaf and callus of Rheum emodi Wall using GC-MS. Pharmacogn J. 2019; 11 (3): 617-623.

86. Amin NH, El-Saadi MT, Ibrahim AA, Abdel-Rahman HM. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg. Chem. 2021; 111: 104841. https://doi.org/10.1016/j.bioorg.2021.104841

87. Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem. 2024; 67 (10):7788-7824. https://doi.org/10.1021/ acs.jmedchem.4c00652

88. Hasan M, Tariquzzaman M, Islam MR, Susmi TF, Rahman MS, Rahi MS. Plant-derived Bisphenol C is a drug candidate against Nipah henipavirus infection: an in-vitro and in-silico study of Pouzolzia zeylanica (L.) Benn. In Silico Pharmacol. 2025; 13 (1):43. https://doi.org/10.1007/s40203-025-00328-2