Evaluating Pre-Planting Trichoderma asperellum Application for Bocontrol of Macrophomina phaseolina in Screenhouse-Grown Cowpea

Main Article Content

Olusola L. Oyesola
Tonjock R. Kinge
Olufisayo A. Kolade
Olawole O. Obembe

Abstract

Cowpea is recognised for its importance as a food and forage crop for animals. However, Macrophomina phaseolina, a fungus that causes pre-harvest crop loss, affects its production. In this study, Trichoderma was employed as an alternative to synthetic fungicides that negatively impact biodiversity to manage rot disease in cowpea. Three strains of Trichoderma asperellum were isolated from the soil. The spore suspensions of the Trichoderma strains were formulated into seven treatment combinations and applied to the cowpea soil before planting to investigate their biocontrol potential on M. phaseolina and their effects on cowpea biomass. The result showed that Trt3 (54.5417 cm), Trt1 (54.0625 cm) and Trt4 (52.8250 cm) had higher plant height than the negative control (M. phaseolina only (44.9667 cm)). Also, Trt7 (0.5446 cm) and Trt5 (0.5313 cm) had a higher stem girth performance than in the negative control (M. phaseolina only (0.3333 cm)), while Trt7 (24.958), Trt3 (21.417) and Trt6 (20.083) recorded a higher leaf number than in the negative control (M. phaseolina only (8.833)). Zero disease incidence was observed in Trt3 (0%) and Trt7 (0%) upon treatment with the Trichoderma formulations. Zero disease severity was recorded in Trt3 and Trt7 (0%), compared to the negative controls, which displayed 100% disease incidence and severity. The pre-planting Trichoderma application enhanced cowpea biomass and reduced disease incidence and severity compared to the negative control. Therefore, Trichoderma is an effective bioagent for controlling diseases caused by M. phaseolina in cowpea and stimulating its overall performance.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Evaluating Pre-Planting Trichoderma asperellum Application for Bocontrol of Macrophomina phaseolina in Screenhouse-Grown Cowpea. (2025). Tropical Journal of Natural Product Research , 9(11), 5758 – 5765. https://doi.org/10.26538/tjnpr/v9i11.66

References

1.Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv. 2011; 29(2):210-22. doi:10.1016/j.biotechadv.2010.11.004

2.Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J Ethnopharmacol. 2013; 150(2):682-91. doi:10.1016/j.jep.2013.09.043

3.Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.). Heliyon. 2021; 7(11):1-9. e08481. doi:10.1016/j.heliyon.2021.e08481

4.Anago FN, Agbangba EC, Oussou BT, Dagbenonbakin GD, Amadji LG. Cultivation of Cowpea Challenges in West Africa for Food Security: Analysis of Factors Driving Yield Gap in Benin. Agronomy. 2021; 11(6):1139. doi:10.3390/agronomy11061139

5.Baoua I, Rabé MM, Murdock LL, Baributsa D. Cowpea production constraints on smallholders' farms in Maradi and Zinder regions, Niger. Crop Prot. 2021; 142:105533. doi:10.1016/j.cropro.2021.105533

6.Nkomo GV, Sedibe MM, Mofokeng MA. Production Constraints and Improvement Strategies of Cowpea (Vigna unguiculata L. Walp.) Genotypes for Drought Tolerance.4 Int J Agron. 2021; 2021(1):5536417. doi:10.1155/2021/5536417

7.Mohammed SB, Dzidzienyo DK, Umar ML, Ishiyaku MF, Tongoona PB, Gracen V. Appraisal of cowpea cropping systems and farmers' perceptions of production constraints and preferences in the dry savannah areas of Nigeria. CABI Agric Biosci. 2021; 2:25. doi:10.1186/s43170-021-00046-7

8.Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, Gilligan CA, Jones CM, Martin MD, MacDonald GK, Neenan P, Records A, Schmale DG, Tateosian L, Wei Q. The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci U S A. 2021; 118(23). doi:10.1073/pnas.2022239118

9.Mwangi RW, Mustafa M, Charles K, Wagara IW, Kappel N. Selected emerging and reemerging plant pathogens affecting the food basket: A threat to food security. J Agric Food Res. 2023; 14:100827. doi:10.1016/j.jafr.2023.100827

10.Singh BK, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 2023; 21(10):640-56. doi:10.1038/s41579-023-00900-7

11.Agriculture in Nigeria [Internet]. Wikimedia Foundation. [cited 2024 Apr 15]. Available from: https://en.wikipedia.org/wiki/Agriculture_in_Nigeria

12.Zhang W, Kato E, Bianchi F, Bhandary P, Gort G, Van der Werf W. Farmers' perceptions of crop pest severity in Nigeria are associated with landscape, agronomic and socio-economic factors. Agric Ecosyst Environ. 2018; 259:159-67. doi:10.1016/j.agee.2018.03.004

13.Ofuya TI, Okunlola AI, Mbata GN. A Review of Insect Pest Management in Vegetable Crop Production in Nigeria. Insects. 2023; 14(2):111. doi:10.3390/insects14020111

14.Benjamin J, Idowu O, Babalola OK, Oziegbe EV, Oyedokun DO, Akinyemi AM, Adebayo A. Cereal production in Africa: the threat of certain pests and weeds in a changing climate—a review. Agric & Food Secur. 2024; 13(18):1-16. doi:10.1186/s40066-024-00470-8

15.Tudi M, Daniel RH, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health. 2021; 18(3):1112. doi:10.3390/ijerph18031112

16.Andersson E, Isgren E. Gambling in the garden: Pesticide use and risk exposure in Ugandan smallholder farming. J Rural Stud. 2021; 82:76-86. doi:10.1016/j.jrurstud.2021.01.013

17.Abubakar I, Dalglish SL, Angell B, Sanuade O, Abimbola S, Adamu AL, Adetifa IMO, Colbourn T, Ogunlesi AO, Onwujekwe O, Owoaje ET, Okeke IN, Adeyemo A, Aliyu G, Aliyu MH, Aliyu SH, Ameh EA, Archibong B, Ezeh A, Gadanya MA, Ihekweazu C, Ihekweazu V, Iliyasu Z, Kwaku Chiroma A, Mabayoje DA, Nasir Sambo M, Obaro S, Yinka-Ogunleye A, Okonofua F, Oni T, Onyimadu O, Pate MA, Salako BL, Shuaib F, Tsiga-Ahmed F, Zanna FH. The Lancet Nigeria Commission: Investing in health and the future of the nation. Lancet (London, England). 2022; 399(10330):1155-200. doi:10.1016/S0140-6736(21)02488-0

18.Adeyemo JT, Ahmed A, Abaver DT, Riyadh HA, Tabash MI, Lawal AI. Technological Innovation and Agricultural Productivity in Nigeria Amidst Oil Transition: ARDL Analysis. Economies. 2024; 12(9):253. https://doi.org/10.3390/economies12090253

19.Shaista J, Marium T, Rubina A, Asma H, Khurram S, Muhammad WUR, Shahnaz D, Daniel AD, Khaloud MA, Zainul A. Application of powdered Medicago sativa L. Enhances eco-physiological output and protect against root rot fungi disease in okra and cowpea. Sci Hortic. 2024; 337:113458. doi:10.1016/j.scienta.2024.113458

20.Degani O, Gordani A, Dimant E, Chen A, Rabinovitz O. The cotton charcoal rot causal agent, Macrophomina phaseolina, biological and chemical control. Front Plant Sci. 2023; 14:1272335. doi:10.3389/fpls.2023.1272335

21.Airam E, Sanjuana C, Sepulveda E. Biocontrol of Macrophomina phaseolina Using Bacillus amyloliquefaciens Strains in Cowpea (Vigna unguiculata L.). Agronomy. 2022; 12(3):676. doi:10.3390/agronomy12030676

22.Marquez N, Giachero ML, Declerck S, Ducasse DA. Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front Plant Sci. 2021; 12:634397. doi:10.3389/fpls.2021.634397

23.Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. Sci Total Environ. 2023; 900:165801. doi:10.1016/j.scitotenv.2023.165801

24.Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, Cebrián-Torrejón G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable

Agricultural Production: Prospects, Applications and Challenges. Molecules. 2021; 26(16):4835. doi:10.3390/molecules26164835

25.Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021; 9(3):42. doi:10.3390/toxics9030042

26.Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. Sci Total Environ. 2024; 915:170113. doi:10.1016/j.scitotenv.2024.170113

27.Kinge TR, Besong PN. Fungi Diversity on Some Fruits and Biological Control using Two Plants Extracts. J Adv Biol Biotechnol. 2021; 24(4):24-38.

28.Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res. 2022; 257:126978. doi:10.1016/j.micres.2022.126978

29.Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol. 2023; 14:1160551. doi:10.3389/fmicb.2023.1160551

30.Oyesola OL, Sobowale AA, Obembe OO. Effectiveness of Trichoderma koningii Extract on Aspergillus Species Isolated from Rotting Tomato (Solanum lycopersicum Mill). Trop J Nat Prod Res. 2020; 4(11):961-965. doi.org/10.26538/tjnpr/v4i11.19

31.Abdullah NS, Doni F, Mispan MS, Saiman MZ, Yusuf YM, Oke MA, Suhaimi NSM. Harnessing Trichoderma in Agriculture for Productivity and Sustainability. Agronomy. 2021; 11(12):2559. doi:10.3390/agronomy11122559

32.Ma Y, Li Y, Yang S, Li Y, Zhu Z. Biocontrol Potential of Trichoderma asperellum Strain 576 against Exserohilum turcicum in Zea mays. J Fungi. 2023; 9(9). doi:10.3390/jof9090936

33.Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, Singh HV. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustainability. 2022; 14(19):12786. doi:10.3390/su141912786

34.Dutta P, Deb L, Pandey AK. Trichoderma- from lab bench to field application: Looking back over 50 years. Front Agron. 2022; 4:932839. doi:10.3389/fagro.2022.932839

35.Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC. Isolation and Characterization of Trichoderma spp. for Antagonistic Activity Against Root Rot and Foliar Pathogens. Indian J Microbiol. 2012; 52(2):137-44. doi: 10.1007/s12088-011-0205-3.

36.Ben-David A, Davidson CE. Estimation method for serial dilution experiments. J Microbiol Methods. 2014; 107:214-21. doi:10.1016/j.mimet.2014.08.023

37.Jenssen AL, Kauserud H, Maurice S. High phenotypic variability in the wood decay fungus Phellopilus nigrolimitatus. Fungal Ecol. 2022; 59:100982. doi:10.1016/j.funeco.2020.100982

38.Oyewole BO, Olawuyi OJ, Odebode AC, Abiala MA. Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnol Rep (Amst). 2017; 14:8-15. doi:10.1016/j.btre.2017.02.004

39.Chen L, Hao D, Dou K, Lang B, Wang X, Li Y, Chen J. Preparation of High Water-Soluble Trichoderma Co-Culture Metabolite Powder and Its Effects on Seedling Emergence Rate and Growth of Crops. J Fungi (Basel). 2023; 20;9(7):767. doi: 10.3390/jof9070767. PMID: 37504755; PMCID: PMC10381636.

40.Afouda L, Schulz D, Wolf G, Wydra K. Biological control of Macrophomina phaseolina on cowpea (Vigna unguiculata) under dry conditions by bacterial antagonists. Int J Biol Chem Sci. 2012; 6(6):5068-5077. doi:10.4314/ijbcs.v6i6.25

41.Persson L, Bødker L, Larsson-Wikström M. Prevalence and Pathogenicity of Foot and Root Rot Pathogens of Pea in Southern Scandinavia. Plant Dis. 1997; 81(2):171-174. doi:10.1094/PDIS.1997.81.2.171

42.Poveda J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol Control. 2021; 159:104634. doi:10.1016/j.biocontrol.2021.104634

43.Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Front Plant Sci. 2017; 8:102. doi:10.3389/fpls.2017.00102

44.Guzmán-Guzmán P, Etesami H, Santoyo G. Trichoderma: a multifunctional agent in plant health and microbiome interactions. BMC Microbiol. 2025; 25:434. https://doi.org/10.1186/s12866-025-04158-2

45.Napolitano A, Senatore M, Coluccia S, Palomba F, Castaldo M, Spasiano T, Avino AG, Vitale A, Bonfante A, Sacco A, Ruocco M. Development and Evaluation of a Trichoderma-Based Bioformulation for Enhancing Sustainable Potato Cultivation. Horticulturae. 2024; 10(7):664. doi:10.3390/horticulturae10070664

46.Kumari P, Singh AK, Dewangan PK, Pankaj SC, Lakra AK. Effect of foliar application of nutrients on soybean. J Plant Dev Sci. 2017; 9(3):261-264.

47.Waleed A, Kelly DC, Ryota K, Ahmad M, Naveed A, Taqi R, Farhan I. The application of Trichoderma spp., an old but new useful fungus, in sustainable soil health intensification: A comprehensive strategy for addressing challenges. Plant Stress. 2024; 12:100455, https://doi.org/10.1016/j.stress.2024.100455.

48.Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. For agriculture applications. Ann Agric Sci. 2020; 65(2):168-178. doi:10.1016/j.aoas.2020.09.003