Evaluation of Toxic Impact of Mercuric Chloride on Some Behavioural and Neurological Indices of Clarias gariepinus (Burchell, 1822)
Main Article Content
Abstract
Mercury chloride (HgCl2) is a harmful pollutant that accumulates in fish tissues, and this study examines its effects on the behaviour and neurological health of Clarias gariepinus. Juvenile fishes (120) procured from the same brood were used in this study. The fish were acclimatised for 14 days before exposure to HgCl2 concentrations of 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 mg/L in a 96-hour acute toxicity test. Mortality and behavioural responses were recorded, and the LC50 value from Probit regression informed the selection of sublethal concentrations of 0.067, 0.130, 0.200, and 0.267 mg/L for a 28-day sublethal test. After exposure, fish were anaesthetised and dissected, with brain samples analysed for biochemical markers such as acetylcholinesterase, glutamate dehydrogenase, malondialdehyde, glutathione, succinate dehydrogenase, superoxide dismutase, and nitric oxide. Data were analysed using one-way ANOVA and LSD post-hoc tests (p<0.05). Histological analysis assessed neurodegeneration. Behavioural symptoms included erratic swimming, balance loss, and increased mucus production, worsening with higher mercury concentrations and prolonged exposure. Mortality rates rose with mercury levels, reaching 100% at 1.2 mg/L within 48 hours. The LC50 for HgCl2 was 0.267 mg/L. Biochemical results showed increased activities of acetylcholinesterase, glutamate dehydrogenase, malondialdehyde, and nitric oxide and decreased levels of glutathione, succinate dehydrogenase, and superoxide dismutase in exposed fish. Histological examination revealed no brain changes in controls but significant neurodegeneration in mercury-exposed fish, especially at 0.200 and 0.267 mg/L. These findings highlight HgCl2’s severe neurotoxicity to Clarias gariepinus, affecting brain function and inducing oxidative stress.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Ali H, Khan E, Ilahi I. Heavy Metals in Water, Soil and Plants: A Review. J Chem. 2019; 1-14.
2.Aladesanmi T, Oladipo O, Ali G. Aquatic Environmental Contamination: The fate of Asejire Lake in South-Western Nigeria. J Environ Sci Technol. 2013; 7:482-489. doi:10.5897/AJEST11.221.
3.Fatiha B, Omar K, El Azhari M. Mercury-Induced Acute Nephrotoxicity in Rats: Treatment with Aqueous Extract of Pistacia atlantica (Desf). Trop J Nat Prod Res. 2021; 5(12):2063–2067. doi.org/10.26538/tjnpr/v5i12.3
4.Clarkson TW, Magos, L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006; 36(8):609–662. https://doi.org/10.1080/10408440600845619
5.Mahmoud, UM, Mekkawy, IA, Ibrahim, AA. Biochemical response of the African catfish Clarias gariepinus (Burchell, 1822) to sublethal concentrations of mercury chloride with supplementation of selenium and vitamin E. Toxicol Environ Health Sci. 2012; 4(4):218–234. https://doi.org/10.1007/s13530-012-0136-3
6.Branco V, Aschner M, Carvalho C. Neurotoxicity of mercury: An old issue with contemporary significance. Adv Neurotoxicol. 2021; 5:239–262. https://doi.org/10.1016/bs.ant.2021.01.001
7.Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol. 2011; 256(3):405–417. https://doi.org/10.1016/j.taap.2011.05.001
8.Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett. 2010; 198(1):49–55. https://doi.org/10.1016/j.toxlet.2010.04.013
9.Turan F, Turan F. A general view of African catfish Clarias gariepinus (Burchell, 1822) from the Asi River. J Anim Vet Adv. 2016; 15(11):2222-2227.
10.Ayandiran AT, Ogundiran MA, Olayinka AS, Olaniyi OA, Olanipekun AS, Oluwaseun OT. Histological Response of Clarias gariepinus to Varying Concentrations of Pharmaceutical Effluents. Ann Res Rev Biol. 2020; 68-75.
11.ASTM (American Society for Testing of Materials). Method 729-90, Guide for Conducting Acute Toxicity Test with Fishes, Macroinvertebrates and Amphibians. ASTM, Philadelphia, 1991; 403-422.
12.Guedenon P, Edorh AP, Hounkpatin ASY, Alimba CG, Ogunkanmi AB, Nwokejiegbe EG, Boko M. Acute Toxicity of Mercury (HgCl2) to African Catfish, Clarias gariepinus. Res J Chem Sci. 2012; 41-45.
13.Ellman GL, Courtney DK, Andreas V, Featherstone RM. A new and rapid colourimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7:88–95.
14.Griess P. Remarks on the paper by Weselsky and Benedikt. "On some azo compounds." Chem Ber. 1879; 12:426-428. https://doi.org/10.1002/cber.187901201117
15.Varshney R, Kale RK. Effects of Calmodulin Antagonists on Radiation-Induced Lipid Peroxidation in Microsomes. Int J Radiat Biol. 1990; 58:733-743. http://dx.doi.org/10.1080/09553009014552121
16.Kuo C, Keizo M, Stuart DS, Jerry BH. Lipid peroxidation: A possible mechanism of cephaloridine-induced nephrotoxicity. Toxicol Appl Pharmacol. 1983; 67:78-88. https://doi.org/10.1016/0041-008X(83)90246-6.
17.Beatty CH, Basinger GM, Dully CC, Bocek RM. Comparison of red and white voluntary skeletal muscles of several species of primates. J Histochem Cytochem. 1966; 14:590.
18.Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247:3170–3175.
19.Avwioro OG. Histochemistry and Tissue Pathology, Principles and Techniques. Claverianum Press, Nigeria, 2010.
20.Hassaninezhad L, Safahieh A, Salamat N, Savari A, Majd NE. Assessment of gill pathological responses in the tropical fish yellowfin seabream of Persian Gulf under mercury exposure. Toxicol Rep. 2014; 1:621–628. https://doi.org/10.1016/j.toxrep.2014.07.016
21.Stanković AR, Dragićević S, Pavić D, Gačić Z. Heavy metals in water, sediment, and fish in the Danube River in Serbia. Environ Monit Assess. 2018; 190(11):665.
22.Kwok KWH, Leung KMY, Ng CKY. Effects of mercury contamination on fish behaviour: A critical review. Environ Sci Pollut Res. 2020; 27(15):17389-17403.
23.Okomoda J, Ayuba VO, Omeji S. Haematological Changes of Clarias gariepinus (Burchell, 1822) Fingerlings Exposed to Acute Toxicity of Formalin. PAT. 2010; 6(1):92-100.
24.Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV. Acute toxicity of silver (HgCl2) to Tilapia fish, Oreochromis leucostictus. B Inst Pesca Sao Paulo. 2007; 33(1):99-104.
25.Shyong WJ, Chen HC. Acute toxicity of selenium, cadmium, and silver to the freshwater fish Varicorhinus barbatus and Zacco barbata. Acta Zool Taiwanica. 2000; 11(1):33-45.
26.Yulianto B, Soegianto A, Affandi M, Payus CM. The impact of various periods of mercury exposure on the osmoregulatory and blood gas parameters of tilapia (Oreochromis niloticus). Emerg Contam. 2023; 9(3):100244. https://doi.org/10.1016/j.emcon.2023.100244
27.Porciúncula LO, Rocha JB, Tavares RG, Ghisleni G, Reis M, Souza DO. Methylmercury inhibits glutamate uptake by synaptic vesicles from rat brains. Neuroreport. 2003; 14(4):577–580. https://doi.org/10.1097/00001756-200303240-00010
28.Ur Rehman MZ, Ullah I, Abdullah S. Toxic effects of a mixture of heavy metal pollutants on freshwater fish species Cirrhina mrigala L. Orig Res. 2016; 1:63-68.
29.Zhu X, Cai L, Meng S, Chen S, Zhou Y. Protective effects of Lycium barbarum polysaccharide on mercury-induced hippocampal oxidative damage in rats. Int J Environ Res Public Health. 2018; 15(11):2421.
30.Li, ZH, Li, P, Randak, T. Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol. 2016; 167:51-59.
31.Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem Int. 2018; 113:490-498.
32.Zhang Z, Tang J, Chen X, Wang X, Hu J. Chronic mercury exposure induces neuroinflammation via NOX2/ROS/NF-κB pathway in Dabry’s sturgeon (Acipenser dabryanus). Fish Shellfish Immunol. 2021; 113:178-187.
33.Lin Q, Yang X, Sun L, Guo L, Huang J. Effects of acute copper exposure on mitochondrial function, gene expression and enzyme activity of antioxidant systems in zebrafish. Aquat Toxicol. 2019; 207:93-102.
34.Pérez-Cadahía B, Laffon B, Pásaro E. Review on the effects of exposure to spilled oils on human health. J Appl Toxicol. 2019; 39(4):701-718.
35.Rodríguez F, López JC, Vargas JP, Gómez Y, Broglio C, Salas C. Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci. 2017; 37(32):7712-7725.
36.Quagio-Grassiotto I, Pelegrini DR, Fanta E. Structural and ultrastructural study of the brain of the Characiformes fish, Astyanax altiparanae: Histological evidence for telencephalic pallium in fish. Micron. 2015; 73:1-10.
37.Nascimento JM, Martins NR, Gonçalves CL, Lopes LG, Leite S, Rodrigues JL, Da Cunha MA. Neuroprotective effect of fructose-1, 6-bisphosphate against brain ischemic damage in rats. Mol Neurobiol. 2020; 57(6):2671-2682.
38.Olsson A, Söderström S, Gauthier D. Methylmercury effects on brain and muscle histology of zebrafish (Danio rerio) embryos. Aquat Toxicol. 2020; 229:105654.
39.Sahin SA, Doğan Z, Şimşek A. Mercury-induced neurotoxic effects on human and animal cells: a review. Environ Sci Pollut Res. 2020; 27(25):31557-31570.
40.García-Hernández M, Bernal-Hernández YY, Rodríguez-Ruiz HA, Domínguez-López ML. Mercury and arsenic alter the behaviour of juvenile goldfish (Carassius auratus): a comparative study. Chemosphere. 2019; 235:714-722.


