Aqueous Extract of Ampelopsis Cantoniensis With the Addition of Curcuma Longa and Taraxacum Officinale: LD50 on Zebrafish (Danio Rerio) Embryos and Nanoformulations for Bacteria Inhibition
Main Article Content
Abstract
Herbal extracts are promising sources of bioactive compounds with potential antimicrobial and biomedical applications. However, their safety and bioavailability often limit their practical use. This study aimed to evaluate the acute toxicity and antibacterial activity of an aqueous extract of Ampelopsis cantoniensis combined with Curcuma longa and Taraxacum officinale (Am-CT extract), and to enhance its performance through nanoformulation. The Am-CT extract, containing 29.69% dihydromyricetin, was tested for toxicity in zebrafish embryos at concentrations ranging from 1.875 to 15 g L⁻¹. The results indicated that the extract was safe, with an LC₅₀ value of 7.81 g L⁻¹, showed weak teratogenicity (EC₅₀ = 7.422 g L⁻¹), and had a therapeutic index (TI) of 1.025. Three Am-CT nanoformulations were prepared using chitosan (CS) and carboxymethyl cellulose (CMC) and characterized by FESEM, DLS, and FTIR analyses. The nanoformulation with a CMC/CS ratio of 1/2 exhibited particle sizes of 80–100 nm and demonstrated stronger antibacterial activity against Escherichia coli and Staphylococcus aureus than the crude extract. Both the extract and its nanoformulation were more cytocompatible than dihydromyricetin, confirming their potential as safe and effective antibacterial agents.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Do HB. Medicinal plants and medicinal animals in Vietnam. Hanoi: Science and Technics Publishing House, 2006.
2.Do TL. Medicinal Plants and Drugs from Vietnam. Medicine Publishing House, 2004.
3.Ha DT, Thuong PT, Thuan ND. Protective action of Ampelopsis cantoniensis and its major constituent myricetin against LDL oxidation. Vietnam J of Chem. 2014; 45(6): 768-771. Doi: https://doi.org/10.15625/4828
4.Le TTH. Method of manufacturing graphene oxide - nano iron oxide - nano silver composite material. 2023; 1-2023-01795, Vietnam, 2023.
5.Nguyen TXT, Ngo VQ, Dang ĐL, Thanh TTT. Structure and biological activity of five flavonoids from Ampelopsis cantoniensis. Vietnam J of Sci and Tech. 2020; 58: 181–188.
6.Deyu L, Mingqi Q, Tingyun L. Extraction and isolation of ampelopsin from Ampelopsis cantoniensis Planch and its inhibitory effect on B16 melanoma. Academic J of Sun Yat-sen Uni of Medical Sci. 1999; 20: 127-129.
7.Zhihong X, Yan Z, Xiaoqi Z, Ming-Wei Z, Jian-Wei C. Analyses and evaluation of nutritional components and flavones of Ampelopsis cantoniensis leaf. Food Sci. 2000; 21(12): 113-114.
8. Tan TW, Lin YT, Yang JS, Lu CC, Chiang JH, Wu CL, Lin JP, Tang NY, Yeh CC, Fan MJ, Chung JG. A. cantoniensis inhibits the proliferation of murine leukemia WEHI-3 cells in vivo and promotes immunoresponses in vivo. In vivo. 2009; 23(4): 561–566.
9.Wu X, Huang R, Xu Z, Qiu S.. Chemical Constituents from Vine Stems of Ampelopsis Cantoniensis. Nat. Prod. Res. Dev. 2014; 26(11): 1771–1774.
10.Nguyen VT, Than NS, Nguyen TTM. Isolation adn optimization of extraction process of flavonoid compounds in Ampelosis cantoniensis (Planch.) collected from Hong Ca Town, Tran Yen town, Yen Bai province. J of Sci & Techn - Hanoi Uni of Indus. 2022; 74–77.
11.Wahyuni A, Mudigdo A, Soetrisno, Wasita B, Budi UR, Widyaningsih V, Sari IP. Beneficial Effects of Self-nanoemulsifying Drug Delivery System Extract of Curcuma longa on Polycystic Ovary Syndrome Rats Model Through Insulin Sensitization Activity, Trop J Nat Prod Res, 2024, 8(3), Doi: 10.26538/tjnpr/v8i3.14.
12.Tung BT, Nham DT, Hai NT, Thu DK. Chapter 10 - Curcuma longa, the Polyphenolic Curcumin Compound and Pharmacological Effects on Liver. Diet. Interv. Liver Dis.: Foods, Nutr., Diet. Suppl. 2019; 125–134. Doi: https://doi.org/10.1016/B978-0-12-814466-4.00010-0
13.Nasery MM, Abadi B, Poormoghadam D. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules. 2020; 25(3): 689-717. Doi: https://doi.org/10.3390/molecules25030689
14.Kaabi SAG, Ali BM. Pharmacology of Herbal Remedies for Urinary Tract Infection in Western Countries, Trop J Nat Prod Res, 2020, 4(10), 653–660, Doi: 10.26538/tjnpr/v4i10.1.
15.Di Napoli A, Zucchetti P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent. 2021; 45:110. Doi: https://doi.org/10.1186/s42269-021-00567-1
16.Amin Mir M, Sawhney S, Jassal M. Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale 2013 Wudpecker Journals Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker J. Pharm. Pharmacol. 2013; 2: 1–005.
17.Qian L, Zhou Y, Teng Z, Du C.-L., Tian C. Preparation and antibacterial activity of oligosaccharides derived from dandelion. Int. J. Biol. Macromol. 2014; 64: 392–394. Doi: https://doi.org/10.1016/j.ijbiomac.2013.12.031
18.Wang H-B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale. Carbohydr. Polym. 2014; 103: 140–142. Doi: https://doi.org/10.1016/j.carbpol.2013.12.029
19.Díaz K, Espinoza L, Madrid A, Pizarro L., Chamy R. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents. Evid.-Based Complement. Altern. Med. 2018; 2018:2706417. Doi: 10.1155/2018/2706417
20.El-Emam SZ, Abo El-Ella DM, Fayez SM, Asker M, Nazeam JA. Novel dandelion mannan-lipid nanoparticle: Exploring the molecular mechanism underlying the potent anticancer effect against non-small lung carcinoma. J Funct Foods. 2021; 87: 104781. Doi: https://doi.org/10.1016/j.jff.2021.104781
21.Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Umaru ML, Ogbulie CS, Mshelia HE, Umar M, Njan AA. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon. 2019; 5: e01179. Doi: https://doi.org/10.1016/j.heliyon.2019.e01179
22.Seremet OC, Olaru OT, Gutu CM, Nitulescu GM, Ilie M, Negres S, Zbarcea CE, Purdel CN, Spandidos DA, Tsatsakis AM, Coleman MD, Margina DM. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models. Mol. Med. Rep. 2018; 17(6): 7757–7763. Doi: https://doi.org/10.3892/mmr.2018.8795
23.Xavier J, Kripasana K. Acute Toxicity of Leaf Extracts of Enydra fluctuans Lour in Zebrafish (Danio rerio Hamilton). Scientifica. 2020; 2020: 3965376. Doi: 10.1155/2020/3965376
24.Naderi Z, Azizian J, Moniri E, Farhadyar N. Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery. J. Inorg. Organomet. Polym. Mater. 2020; 30: 1339–1351. Doi: https://doi.org/10.1007/s10904-019-01301-1
25.Osorio EJ, Gómez Vanegas NA, Orozco CPO. Chitosan/carboxymethyl cellulose wound dressings supplemented with biologically synthesized silver nanoparticles from the Ligninolytic Fungus Anamorphous Bjerkandera sp. R1. Heliyon. 2022; 8(9): e10258. Doi: https://doi.org/10.1016/j.heliyon.2022.e10258
26.OECD. Test no. 236: Fish Embryo Acute Toxicity (FET) test. OECD guidelines for the testing of chemicals. 2013.
27.Jarque S, Rubio-Brotons M, Ibarra J, Ordoñez V, Dyballa S. Miñana R, Terriente J. Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod. Toxicol. 2020; 96: 337–348. Doi: https://doi.org/10.1016/j.reprotox.2020.08.004
28.Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016; 6: 71–79. Doi: https://doi.org/10.1016/j.jpha.2015.11.005
29.Hossain MdR, Biplob AI, Sharif SR, Bhuiya AM, Sayem ASM. Antibacterial Activity of Green Synthesized Silver Nanoparticles of Lablab purpureus Flowers Extract against Human Pathogenic Bacteria, Trop J Nat Prod Res, 2023, 7(8), Doi: 10.26538/tjnpr/v7i8.12.
30.Ita B and Eduok S. Antioxidant and Antibacterial Activity of Alkaloid Fractions of Tristemma hirtum P. Beauv, Trop J Nat Prod Res, 2020, 4(4), 179–184, Doi: 10.26538/tjnpr/v4i4.10.
31.Bauer B, Mally A, Liedtke D. Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci. 2021; 22(24):13417. Doi: 10.3390/ijms222413417
32.Miyagawa M. Globally harmonized system of classification and labelling of chemicals (GHS) and its implementation in Japan. Nihon Eiseigaku Zasshi. 2010; 65(1):5-13. Doi: 10.1265/jjh.65.5
33.Alafiatayo AA, Lai K-S, Syahida A, Mahmood M, Shaharuddin NA. Phytochemical Evaluation, Embryotoxicity, and Teratogenic Effects of Curcuma longa Extract on Zebrafish (Danio rerio). Evid. Based Complement. Altern. Med. 2019; 2019: 3807207.
34.Wahyuni A, Mudigdo A, Soetrisno, Wasita B, Budi UR, Widyaningsih V, Sari IP. Beneficial Effects of Self-nanoemulsifying Drug Delivery System Extract of Curcuma longa on Polycystic Ovary Syndrome Rats Model Through Insulin Sensitization Activity, Trop J Nat Prod Res, 2024, 8(3), 6563-6569, Doi: 10.26538/tjnpr/v8i3.14.
35.Huang W, Xie J. Antibacterial Effect of Dihydromyricetin on Specific Spoilage Organisms of Hybrid Grouper. J of Food Qual; 2021; 5569298.
36.Xiao XN, Wang F, Yuan YT, Liu J, Liu YZ, Yi X. Antibacterial Activity and Mode of Action of Dihydromyricetin from Ampelopsis grossedentata Leaves against Food-Borne Bacteria. Molecules. 2019; 24(15):2831. Doi: 10.3390/molecules24152831
37.Thai H, Thuy NC, Thach LT, Tran TT, Mai HD, Nguyen TTT, Le GD, Can MV, Tran LD, Bach GL, Ramadas K, Sathich CI, Le QV. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci Rep. 2020; 10: 909. Doi: https://doi.org/10.1038/s41598-020-57666-8
38.Van NTB, Thao DTT, Trung HT, Anh TT, Sa VDN, Hung KV, Phu PTV. In Vitro Antibacterial Activity of Ampelopsis Cantoniensis Extracts Cultivated at Danang Against Clinically Isolated (Ampelopsis Cantoniensis) AGAINST clinically isolated Staphylococcus Aureus. TNU J of Sci and Tech. 2022; 227.S10: 235–242.
39.Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother. 2001; 48: 7–13. Doi: 10.1093/jac/48.1.7
40.Hasan A, Waibhaw G, Saxena V, Lalit MP. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Inter J of Bio Macro. 2018; 111: 923–934. Doi: https://doi.org/10.1016/j.ijbiomac.2018.01.089


