Green Synthesis of Silver Nanoparticles (AgNPs) using Cempedak (Artocarpus champeden (Lour.) Stokes.) Bark Extract: Evaluation of Anti-Inflammatory and Photodegradation Properties

Main Article Content

Noor Hindryawati
Husna Syaima
Irfan Ashari Hiyahara
Teguh Wirawan
M. Syaiful Arief
Nanang Tri Widodo
Mega Silvia Dewi
Gaanty Pragas Maniam

Abstract

Cempedak (Artocarpus champeden) bark, rich in flavonoids, phenolics, and alkaloids, was used as a natural bioreductant for the green synthesis of silver nanoparticles (AgNPs). In this context, microwave-assisted synthesis (450 W, 15–22 min) enabled rapid and uniform formation of stable AgNPs. Characterization using UV–Vis spectroscopy, particle size analysis (PSA), and transmission electron microscopy (TEM) also confirmed spherical nanoparticles with an average diameter of 69 nm. AgNPs synthesized at 22 minutes exhibited the highest absorbance and stability. Photocatalytic evaluation showed that 8% (v/v) AgNPs degraded 93.62% of 5 ppm methylene blue within 30 seconds, while anti-inflammatory assays reported 38.99% inhibition at 400 ppm (IC₅₀ = 673.75 ppm), indicating moderate activity. These results showed that A. champeden bark extract served as an efficient and sustainable reducing agent for the production of bioactive and photocatalytically active AgNPs, offering potential applications in environmental remediation and biomedical fields.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Green Synthesis of Silver Nanoparticles (AgNPs) using Cempedak (Artocarpus champeden (Lour.) Stokes.) Bark Extract: Evaluation of Anti-Inflammatory and Photodegradation Properties. (2025). Tropical Journal of Natural Product Research , 9(11), 5438 – 5446. https://doi.org/10.26538/tjnpr/v9i11.26

References

1.Elzein B. Nano Revolution: Tiny tech, big impact: How nanotechnology is driving SDGs progress. Heliyon. 2024; 10:1-26. DOI: https://doi.org/10.1016/j.heliyon.2024.e31393

2.Akinniyi JN. Synthesis and characterization of copper nanoparticles using Allium cepa (L.) outer peel at ambient temperature. Trop J Nat Prod Res. 2025; 9(3):1144-1149. DOI: https://doi.org/10.26538/tjnpr/v9i3.32

3.Hochvaldová L, Panáček D, Válková L, Večeřová R, Kolář M, Prucek R, Kvitek L, Panacek A. E. coli and S. aureus resist AgNPs via an identical mechanism, but through different pathways. Commun Biol. 2024; 7:1-10. DOI: https://doi.org/10.1038/s42003-024-07266-3

4.Nandhini R, Rajeswari E, Harish S, Sivakumar V, Gangai SR, Jaya SD. Role of chitosan nanoparticles in sustainable plant disease management. J Nano Res. 2025; 27(13):1-35. DOI: https://doi.org/10.1007/s11051-024-06203-z

5.Mwangi NV, Madivoli SE, Kangogo M, Wangui MC, Wanakai IS, Nzilu MD, Waudo. An evaluation of the antimicrobial potency of AgNPs synthesised from Fusarium sp. Discov Appl Sci. 2024; 6(4):201. DOI: https://doi.org/10.1007/s42452-024-05870-w

6.Misra R, Hazra S, Saleem S, Nehru S. Drug-loaded polymer-coated AgNPs for lung cancer theranostics. Med Oncol. 2024; 41(6):132. DOI: https://doi.org/10.1007/s12032-024-02372-y

7.Sharma R, Tyagi S, Kandwal A, Bachheti RK, Bachheti A. Green synthesis of silver/silver chloride nanoparticles mediated by Alternanthera philoxeroides leaf extract and their biological activity. Russ J Gen Chem. 2024; 94(7):1750–1757. DOI: https://doi.org/10.1134/S1070363224070181

8.Pradhan L, Sah P, Nayak M, Upadhyay A, Pragya P, Tripathi S, Singh G, Maunika B, Paik P, Mukherjee S. Biosynthesized AgNPs prevent bacterial infection in the chicken egg model and mitigate biofilm formation on medical catheters. J Bio Inorg Chem. 2024; 29(3):353–373. DOI: https://doi.org/10.1007/s00775-024-02050-4

9.Yang S, Zhang C, Yong L, Niu M, Cheng W, Zhang L. Construction of PNIPAM/graphene oxide loaded with AgNPs interpenetrating intelligent hydrogels for antibacterial dressing. Polym Bull. 2024; 81(14):13027–13044. DOI: https://doi.org/10.1007/s00289-024-05274-1

10.Rehman F, Ali A, Zubair M, Waheed U, Khan R, Yaqoob A, Shahzadi I, Siddique M. Microwave-assisted green synthesis of AgNPs and chitosan nanocomposites for the removal of reactive blue-19. Int J Environ Sci Tech. 2025; 22(2):1001–1016. DOI: https://doi.org/10.1007/s13762-024-05674-w

11.Karpuz Ö, Baltacı C, Gül A, Gülen J, Bozbeyoğlu P, Aydoğan N. Green synthesis of iron and AgNPs from aqueous extract of buckwheat husk waste: antibacterial, cytotoxic, and dye decolorization properties. Biomass Convers Biorefin. 2024. DOI: https://doi.org/10.1007/s13399-024-06287-6

12.Asefian S, Ghavam M. Green and environmentally friendly synthesis of AgNPs with antibacterial properties from some medicinal plants. BMC Biotechnol. 2024; 24(1):5. DOI: https://doi.org/10.1186/s12896-023-00828-z

13.Fabiani VA, Silvia D, Liyana D, Akbar H. Synthesis of Silver Nanoparticles Using Leaf Extract of Cratoxylum glaucum as a Bioreductant via Microwave Irradiation Method. Full J Chem. 2019; 4(2):96-101. DOI: https://doi.org/10.37033/fjc.v4i2.102

14.Punuri JB, Sharma P, Sibyala S, Tamuli R, Bora U. Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int Nano Lett. 2012; 2(1):18. DOI: https://doi.org/10.1186/2228-5326-2-18

15.Priya RS, Geetha D, Ramesh PS. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol Environ Saf. 2016; 134:308–318. DOI: https://doi.org/10.1016/j.ecoenv.2015.07.037

16.Akhter MS, Rahman MA, Ripon RK, Mubarak M, Akter M, Mahbub S, Mahbub S, Mamun FA, Sikder MT. A systematic review on green synthesis of AgNPs using plant extracts and their biomedical applications. Heliyon. 2024; 10(11):e29766. DOI: https://doi.org/10.1016/j.heliyon.2024.e29766

17.Fabiani VA, Sutanti F, Silvia D, Putri MA. Green Synthesis of Silver Nanoparticles Using Cratoxylum glaucum Leaf Extract as a Bioreductant. IJoPAC. 2018; 1(2):68-76. DOI: https://doi.org/10.26418/indonesian.v1i2.30533

18.Hayaza S, Arifriandini HI, Malek NANN, Susilo RJK, Sajidah ES. Biosynthesis of Iron Oxide Nanoparticles Using Okra Pods Extract and Its Anticancer Activity on WiDr Colon Cancer Cells. Trop J Nat Prod Res. 2025; 6(9):2513–2518. DOI: https://doi.org/10.26538/tjnpr/v9i6.23

19.Ikhwan RM, Nurlely N, Fadlilaturrahmah F, Ma’shumah M. Phytochemical Screening and Determination of Total Phenolic Content in Leaf Extracts of Artocarpus heterophyllus, Artocarpus integer, and Artocarpus odoratissimus from Pengaron Village, Banjar Regency. J Insan Farmasi Indonesia. 2021; 4(1):95–102. DOI: https://doi.org/10.36387/jifi.v4i1.667

20.Hakim AR, Saputri R, Savitri AS, Ujuldah A, Sadlia F. Antioxidant Activity of Cempedak (Artocarpus integer (Thunb.) Merr.) Fruit Peel from South Kalimantan. J Surya Medika. 2022; 7(2):10–13. DOI: https://doi.org/10.33084/jsm.v7i2.2858

21.Fahim M, Shahzaib A, Nishat N, Jahan A, Bhat TA, Inam A. Green synthesis of AgNPs: A comprehensive review of methods, influencing factors, and applications. JCIS Open. 2024; 16: 100125. DOI: https://doi.org/10.1016/j.jciso.2024.100125

22.Sultana MstJ, Nibir AIS, Ahmed FRS. Biosensing and anti-inflammatory effects of silver, copper, and iron nanoparticles from the leaf extract of Catharanthus roseus. Beni-Suef Univ J Basic Appl Sci. 2023; 12(1): 26. DOI: https://doi.org/10.1186/s43088-023-00358-9

23.Mathesh A, Carmelin DS, Mohanprasanth A, Sravanthy PG, Snega R, Surya M, Saravana M. Tridax procumbens–mediated one-pot synthesis of silver-doped fucoidan nanoparticles and their antibacterial, antioxidant, and anti-inflammatory efficacy. Biomass Convers Biorefin. 2024; 14(8): 9887–9896. DOI: https://doi.org/10.1007/s13399-023-05265-8

24.Khan ZUR, Assad N, Naeem-ul-Hassan M, Sher M, Alatawi FS, Alatawi MS, Omran AME, Jame RMA, Adnan M, Khan MN, Ali B, Wahab S, Razale SA, Javed MA, Kaplan A, Rahimi M. Correction to: Aconitum lycoctonum L. (Ranunculaceae) mediated biogenic synthesis of AgNPs as potential antioxidant, anti-inflammatory, antimicrobial, and antidiabetic agents. BMC Chem. 2023; 17(1): 143. DOI: https://doi.org/10.1186/s13065-023-01058-2

25.Ristianingsih Y, Istiani A, Irfandy F. Equilibrium Study of Methylene Blue Adsorption onto Fe₂O₃-Impregnated Activated Carbon Derived from Corncob. J Teknol Agro-Ind. 2020; 7(1): 47–55. DOI: https://doi.org/10.34128/jtai.v7i1.115

26.Boddu S, Kondiboina N, Sandeep J, Vivek K, Prasad MB, Srinu N, Subbaiah T. Green AgNPs: A Sustainable Approach for Photocatalytic Degradation of Rhodamine B. J Ins Eng. (India): D. 2024; 105(3): 1989–1997. DOI: https://doi.org/10.1007/s40033-023-00621-4

27.Lestari A, Prince S, Jusniar. Isolation and Identification of Secondary Metabolites from the Chloroform Extract of Breadfruit (Artocarpus altilis) Stem Bark. J Chem. 2016; 17(1). 76-82. DOI: https://doi.org/10.35580/chemica.v17i1.4572

28.Lumowa SVT, Bardin S. Phytochemical Screening of Kepok Banana (Musa paradisiaca L.) as a Natural Source of Botanical Pesticide with Potential to Suppress Insect Pests in Short-Lived Crops. J Sains Kes. 2018; 1(9): 445-469. DOI: https://doi.org/10.25026/jsk.v1i9.87

29.Rahmayani LPD, Edyson, Budiarti LY. Comparison of Antibacterial Activity between Single and Combined Infusions of Phyllanthus niruri and Peperomia pellucida against Escherichia coli. Homeostatis. 2020; 3(1): 67-74. DOI: https://doi.org/10.20527/ht.v3i1.2017

30.Tormena RPI, Santos M-KMS, Silva AO, Félix FM, Chaker JA, Freire DO, Silva ICR, Moya SE, Sausa MH. Enhancing the antimicrobial activity of AgNPs against pathogenic bacteria by using Pelargonium sidoides DC extract in microwave-assisted green synthesis. RSC Adv. 2024; 14(30): 22035–22043. DOI: https://doi.org/10.1039/D4RA04140B

31.Shaikh WA, Chakraborty S, Islam RU. Photocatalytic Degradation of Rhodamine B Under UV Irradiation Using Shorea robusa Leaf Extract-Mediated Bio-Synthesis AgNPs. Int J Environ Sci Technol. 2019. DOI: https://doi.org/10.1007/s13762-019-02473-6

32.Farida Y, Rahmat D, Amanda AW. Anti-Inflammation Activity Test of Nanoparticles Ethanol Extract of Temulawak Rhizome (Curcuma xanthorrhiza Roxb.) with Protein Denaturation Inhibition Method. Ind J Pharm Sci. 2018; 16(2): 225. DOI: https://doi.org/10.35814/jifi.v16i2.569

33.Ayad R, Akkal S. Phytochemistry and biological activities of algerian Centaurea and related genera. Stud Nat Prod Chem. 2019; 63: 357–414. DOI: https://doi.org/10.1016/B978-0-12-817901-7.00012-5

34.Bandara N, Chalamaiah M. Bioactives from Agricultural Processing By-products. Encycl Food Chem. 2019; 472–480. DOI: https://doi.org/10.1016/B978-0-08-100596-5.22408-6

35.Negi AS, Jain S. Recent advances in natural product-based anticancer agents. Stud Nat Prod Chem. 2022; 75: 367–447. DOI: https://doi.org/10.1016/B978-0-323-91250-1.00010-0

36.Langa F, De La CP, De La HA, Diaz‐Ortiz A, Diez‐Barra E. Microwave Irradiation: More Than Just a Method for Accelerating Reactions. ChemInform. 1998; 29(1). DOI: https://doi.org/10.1039/CO9970400373

37.Bao C, Serrano-Lotina A, Niu M, Portela R, Li Y, Lim KH, Liu P, Wan W-J, Banares MA, Wang Q. Microwave-associated chemistry in environmental catalysis for air pollution remediation: A review. Chem Eng J. 2023; 466: 142902. DOI: https://doi.org/10.1016/j.cej.2023.142902

38.Jung SC. The microwave-assisted photo-catalytic degradation of organic dyes. Water Sci Technol. 2011; 63(7): 1491–1498. DOI: https://doi.org/10.2166/wst.2011.393

39.Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV. Influence of Boiling, Steaming, and Frying of Selected Leafy Vegetables on the In Vitro Anti-Inflammation Associated Biological Activities. Plants. 2018; 7(1): 22. DOI: https://doi.org/10.3390/plants7010022