Preventive Effect of Mandarin Peel on Dyslipidemia and Hyperglycemia Associated with Obesity Induced by Cafeteria Diet

Main Article Content

Tawfik Addi
Soumia Fenni
Fatma Z. Ameur
Amira S. Omari
Bouchra I. Cherrak
Samia Addou

Abstract

Obesity is an emerging health problem, characterized by dyslipidemia, hyperglycemia, and cardiovascular risk. Mandarin (citrus reticulata) peel (MP) is used in traditional chinese medicine. Its bioactive compounds, including flavonoids, vitamins, and carotenoids, may help prevent obesity. In this study, we evaluated the effects of MP from western Algeria on obesity and related metabolic parameters in mice. Forty mice were divided into five groups of eight, and were fed different diets for eleven weeks : standard diet, cafeteria diet, cafeteria diet supplemented with 5% and 10% MP powder, cafeteria diet supplemented with MP infusion [5g MP/250ml water] administered orally ad libitum. Body weight was regularly monitored. At the end of 11 weeks, Blood was collected for lipid and glycemic analyses, and the mice were subsequently euthanized. Histological sections of adipose tissue and liver were performed, and hepatic triglycerides were measured. Our results showed that a cafeteria diet supplemented with 5% or 10% MP powder or infusion significantly (P < 0.05) reduced body, liver, and adipose tissue weights compared to the cafeteria diet alone. The supplementation with 5% and 10% MP powder significantly (P < 0.05) reduced plasma levels of total cholesterol, triglycerides, low-density lipoprotein and glycemia, and increased high-density lipoprotein (HDL) compared to the cafeteria group without supplementation. The MP infusion significantly (P < 0.05) reduced triglyceride and increased HDL. Both MP powder and infusion reduced adipocyte hypertrophy and prevented hepatic triglyceride accumulation. These results suggest that MP may help prevent obesity and related metabolic disorders, serving as a phytotherapeutic agent.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Preventive Effect of Mandarin Peel on Dyslipidemia and Hyperglycemia Associated with Obesity Induced by Cafeteria Diet. (2025). Tropical Journal of Natural Product Research , 9(11), 5420 – 5426. https://doi.org/10.26538/tjnpr/v9i11.23

References

1. M Blüher. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019; 15(5):288–298. doi:10.1038/s41574-019-0176-8.

2. X Lin, H Li. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021; 12:706978. doi:10.3389/fendo.2021.706978.

3. C Koliaki, S Liatis, A Kokkinos. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019; 92:98–107. doi:10.1016/j.metabol.2018.10.011.

4. G Battineni, GG Sagaro, N Chintalapudi, F Amenta, D Tomassoni, SK Tayebati. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD). Int. J. Mol. Sci. 2021; 22(9):4798. doi:10.3390/ijms22094798.

5. M Prats-Arimon, M Puig-Llobet, O Barceló-Peiró, I Ribot-Domènech, C Vilalta-Sererols, B Fontecha-Valero, M Heras-Ojeda, Z Agüera, T Lluch-Canut, A Moreno-Poyato, MC Moreno-Arroyo. An Interdisciplinary Intervention Based on Prescription of Physical Activity, Diet, and Positive Mental Health to Promote Healthy Lifestyle in Patients with Obesity: A Randomized Control Trial. Nutrients. 2024; 16(16):2776. doi:10.3390/nu16162776.

6. AM Chao, KM Quigley, TA Wadden. Dietary interventions for obesity: clinical and mechanistic findings. J. Clin. Invest. 2021; 131(1):e140065, 140065. doi:10.1172/JCI140065.

7. A Purwanto, A Adji, A Yanuarita, B de Liyis, B Suwito, S Haksama. An Evidence-Based Review of Herbal Medications in Cardiovascular Disease: A Systematic Review. Trop. J. Nat. Prod. Res. 2025; 9(7):3404–3412. doi:10.26538/tjnpr/v9i7.69.

8. E Santali, N Ichoron, JV Anyam, JO Igoli. Spectroscopic Evaluation of Unsaturation in Some Medicinal Plant Seed Oils: doi.org/10.26538/tjnpr/v6i8.11. Trop. J. Nat. Prod. Res. 2022; 6(8):1223–1227.

9. P Deng, J Durham, J Liu, X Zhang, C Wang, D Li, T Gwag, M Ma, B Hennig. Metabolomic, Lipidomic, Transcriptomic, and Metagenomic Analyses in Mice Exposed to PFOS and Fed Soluble and Insoluble Dietary Fibers. Environ. Health Perspect. 2022; 130(11):117003. doi:10.1289/EHP11360.

10. N Durmus, Z Gulsunoglu-Konuskan, M Kilic-Akyilmaz. Recovery, Bioactivity, and Utilization of Bioactive Phenolic Compounds in Citrus Peel. Food Sci. Nutr. 2024; 12(12):9974–9997. doi:10.1002/fsn3.4570.

11. FB Oluwatobi, OB Afolabi, PA Okiki, OB Akpor. Biological Properties And GC-MS Identification of Compounds of Ethanol Extracts and Volatile Oils From Citrus sinensis, Citrus paradisi and Citrus reticulata. Trop. J. Nat. Prod. Res. 2024; 8(9):8453–8460. doi:10.26538/tjnpr/v8i9.30.

12. A Idoko, EJ Parker, OU Njoku. Assessment of the Effect of Flavonoids Biomolecules on Fat Mass and Obesity Associated (FTO) Protein as Anti-Obesity Agents: An In-Silico Study. Trop. J. Nat. Prod. Res. 2024; 8(3):6669–6680. doi:10.26538/tjnpr/v8i3.29.

13. A Ullah, Q Sun, J Li, J Li, P Khatun, G Kou, Q Lyu. Bioactive Compounds in Citrus reticulata Peel Are Potential Candidates for Alleviating Physical Fatigue through a Triad Approach of Network Pharmacology, Molecular Docking, and Molecular Dynamics Modeling. Nutrients. 2024; 16(12):1934. doi:10.3390/nu16121934.

14. M Alcalá, I Sánchez-Vera, J Sevillano, L Herrero, D Serra, MP Ramos, M Viana. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obes. Silver Spring Md. 2015; 23(8):1598–1606. doi:10.1002/oby.21135.

15. Y Yao, HM Goh, JE Kim. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants. 2021; 10(12):1978. doi:10.3390/antiox10121978.

16. L Kamaliroosta, M Zolfaghari, S Shafiee, K Larijani, M Zojaji. Chemical Identifications of Citrus Peels Essential Oils. 2016; 6:69–76.

17. MA Castro, MA Llanos, BE Rodenak-Kladniew, L Gavernet, ME Galle, R Crespo. Citrus reticulata peel oil as an antiatherogenic agent: Hypolipogenic effect in hepatic cells, lipid storage decrease in foam cells, and prevention of LDL oxidation. Nutr. Metab. Cardiovasc. Dis. Nutr Metab Cardiovasc Dis.. 2020; 30(9):1590–1599. doi:10.1016/j.numecd.2020.04.033.

18. M Shi, Q Guo, Z Xiao, null Sarengaowa, Y Xiao, K Feng. Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review. Foods Basel Switz. 2024; 13(13):1978. doi:10.3390/foods13131978.

19. OM Ahmed, MA Hassan, SM Abdel-Twab, MN Abdel Azeem. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomed. Pharmacother. Biomedecine Pharmacother. 2017; 94:197–205. doi:10.1016/j.biopha.2017.07.094.

20. H Xiong, J Wang, Q Ran, G Lou, C Peng, Q Gan, J Hu, J Sun, R Yao, Q Huang. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Devel. Ther. 2019; 13:3855–3866. doi:10.2147/DDDT.S227499.

21. ST Im, H Kang, J Kim, S-R Kim, K-N Kim, S-H Lee. Narirutin-Rich Celluclast Extract from Mandarin (Citrus unshiu) Peel Alleviates High-Fat Diet-Induced Obesity and Promotes Energy Metabolism in C57BL/6 Mice. Int. J. Mol. Sci. 2024; 25(8):4475. doi:10.3390/ijms25084475.

22. N Sukkasem, W Chatuphonprasert, K Jarukamjorn. Hesperidin and Myricetin Attenuated Non-Alcoholic Fatty Liver Disease (NAFLD) in HepG2 Cells: doi.org/10.26538/tjnpr/v4i10.14. Trop. J. Nat. Prod. Res. 2020; 4(10):739–747.

23. S-J Leigh, MD Kendig, MJ Morris. Palatable Western-style Cafeteria Diet as a Reliable Method for Modeling Diet-induced Obesity in Rodents. J. Vis. Exp. JoVE. 2019; (153). doi:10.3791/60262.

24. C Darimont, M Turini, M Epitaux, I Zbinden, M Richelle, E Montell, A Ferrer-Martinez, K Macé. beta3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet. Nutr. Metab. 2004; 1(1):4. doi:10.1186/1743-7075-1-4.

25. L-H Li, EP Dutkiewicz, Y-C Huang, H-B Zhou, C-C Hsu. Analytical methods for cholesterol quantification. J. Food Drug Anal. 27(2):375–386. doi:10.1016/j.jfda.2018.09.001.

26. N Fukuyama, K Homma, N Wakana, K Kudo, A Suyama, H Ohazama, C Tsuji, K Ishiwata, Y Eguchi, H Nakazawa, E Tanaka. Validation of the Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J. Clin. Biochem. Nutr. 2008; 43(1):1–5. doi:10.3164/jcbn.2008036.

27. VG Yuen, JH McNeill. Comparison of the glucose oxidase method for glucose determination by manual assay and automated analyzer. J. Pharmacol. Toxicol. Methods. 2000; 44(3):543–546. doi:10.1016/s1056-8719(01)00117-4.

28. A Picca, V Pesce, F Fracasso, A-M Joseph, C Leeuwenburgh, AMS Lezza. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim. Biophys. Acta. 2014; 1840(7):2184–2191. doi:10.1016/j.bbagen.2014.03.004.

29. JE Noble, MJA Bailey. Quantitation of protein. Methods Enzymol. 2009; 463:73–95. doi:10.1016/S0076-6879(09)63008-1.

30. Y Buyukdere, A Gulec, A Akyol. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ. 2019; 7:e6656. doi:10.7717/peerj.6656.

31. Y Qian, Z Gao, C Wang, J Ma, G Li, F Fu, J Guo, Y Shan. Effects of Different Treatment Methods of Dried Citrus Peel (Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front. Nutr. 2021; 8:702559. doi:10.3389/fnut.2021.702559.

32. Y-C Chou, C-T Ho, M Pan. Immature Citrus reticulata Extract Promotes Browning of Beige Adipocytes in High-Fat Diet-Induced C57BL/6 Mice. J. Agric. Food Chem. 2018; 66 37:9697–9703. doi:10.1021/acs.jafc.8b02719.

33. J Vekić, A Zeljković, A Stefanović, Z Jelić-Ivanović, V Spasojević-Kalimanovska. Obesity and dyslipidemia. Metabolism. 2019; 92:71–81. doi:10.1016/j.metabol.2018.11.005.

34. Q Chen, A Abudukeremu, K Li, M Zheng, H Li, T Huang, C Huang, K Wen, Y Wang, Y Zhang. High-Density Lipoprotein Subclasses and Their Role in the Prevention and Treatment of Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2024; 25(14):7856. doi:10.3390/ijms25147856.

35. L Wang, H Xu, F Yuan, Q Pan, R Fan, Y Gao. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015; 4:250–258. doi:10.1016/J.BCAB.2015.02.003.

36. J Guo, H Tao, Y Cao, C-T Ho, S Jin, Q Huang. Prevention of Obesity and Type 2 Diabetes with Aged Citrus Peel (Chenpi) Extract. J. Agric. Food Chem. 2016; 64 10:2053–2061. doi:10.1021/acs.jafc.5b06157.

37. Y Tung, W-T Chang, S Li, J-C Wu, V Badmeav, C-T Ho, M Pan. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food Funct. 2018; 9 6:3363–3373. doi:10.1039/c7fo02066j.

38. Z Ke, Y Zhao, S Tan, H Chen, Y Li, Z Zhou, C Huang. Citrus reticulata Blanco peel extract ameliorates hepatic steatosis, oxidative stress and inflammation in HF and MCD diet-induced NASH C57BL/6 J mice. J. Nutr. Biochem. 2020; 83:108426. doi:10.1016/j.jnutbio.2020.108426.

39. S Polyzos, J Kountouras, C Mantzoros. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019; 92:82–97. doi:10.1016/j.metabol.2018.11.014.

40. U White. Adipose tissue expansion in obesity, health, and disease. Front. Cell Dev. Biol. 2023; 11:1188844. doi:10.3389/fcell.2023.1188844.

41. FRS Gasparin, FO Carreño, JM Mewes, EH Gilglioni, CLS Pagadigorria, MRM Natali, KS Utsunomiya, RP Constantin, AT Ouchida, C Curti, IC Gaemers, RPJO Elferink, J Constantin, EL Ishii-Iwamoto. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim. Biophys. Acta Mol. Basis Dis. 2018; 1864(7):2495–2509. doi:10.1016/j.bbadis.2018.04.004.

42. M Hu, L Zhang, Z Ruan, P Han, Y Yu. The Regulatory Effects of Citrus Peel Powder on Liver Metabolites and Gut Flora in Mice with Non-Alcoholic Fatty Liver Disease (NAFLD). Foods Basel Switz. 2021; 10(12):3022. doi:10.3390/foods10123022.

43. X Li, R Zhuang, Z Lu, F Wu, X Wu, K Zhang, M Wang, W Li, H Zhang, W Zhu, B Zhang. Nobiletin promotes lipolysis of white adipose tissue in a circadian clock-dependent manner. J. Nutr. Biochem. 2024; 132:109696. doi:10.1016/j.jnutbio.2024.109696.

44. TTA Bui, MTT Do, STT Do, TT Nguyen, CD Duong. Simultaneous Analysis Method for Rutin, Diosmin, Hesperidin, and Quercetin in Solid Food Supplements by HPLC-PDA. Trop. J. Nat. Prod. Res. 2025; 9(2):473–479. doi:10.26538/tjnpr/v9i2.9.

45. M Falduto, F Smedile, M Zhang, T Zheng, J Zhu, Q Huang, R Weeks, AM Ermakov, ML Chikindas. Anti-obesity effects of Chenpi: an artificial gastrointestinal system study. Microb. Biotechnol. 2022; 15(3):874–885. doi:10.1111/1751-7915.14005.

46. X Zhang, X Li, H Fang, F Guo, F Li, A Chen, S Huang. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr. Metab. 2019; 16:47. doi:10.1186/s12986-019-0370-7.

47. A Rufino, VM Costa, F Carvalho, E Fernandes. Flavonoids as antiobesity agents: A review. Med. Res. Rev. 2020; 41:556–585. doi:10.1002/med.21740.

48. K Lu, YM Yip. Therapeutic Potential of Bioactive Flavonoids from Citrus Fruit Peels toward Obesity and Diabetes Mellitus. Future Pharmacol. 2023; 3(1):14–37. doi:10.3390/futurepharmacol3010002.

49. K Feng, X Zhu, G Liu, Q Kan, T Chen, Y Chen, Y Cao. Dietary citrus peel essential oil ameliorates hypercholesterolemia and hepatic steatosis by modulating lipid and cholesterol homeostasis. Food Funct. 2020; 11(8):7217–7230. doi:10.1039/d0fo00810a.

50. J Zou, Q Song, PC Shaw, Y Wu, Z Zuo, R Yu. Tangerine Peel-Derived Exosome-Like Nanovesicles Alleviate Hepatic Steatosis Induced by Type 2 Diabetes: Evidenced by Regulating Lipid Metabolism and Intestinal Microflora. Int. J. Nanomedicine. 2024; 19:10023–10043. doi:10.2147/IJN.S478589.