Bioconversion of Gentisein to Norathyriol by Mangifera indica L. Leaf Cell-Free Extract
Main Article Content
Abstract
Mangifera indica (mango) leaves are a source of bioactive xanthones—including mangiferin, gentisein, and norathyriol—that possess hypoglycemic, anti-cancer, and antioxidant activities. The co-occurrence of these structurally related compounds suggests the presence of enzymes involved in their biosynthesis in the mango leaves. For the synthesis of bioactive compounds using cell-free extracts, the catalytic activities of the enzymes involved in the proposed biosynthetic pathway should be determined. This study aimed to investigate the hydroxylase activity that converts gentisein to norathyriol, and the C-glycosidase activity that cleaves mangiferin to norathyriol in the mango leaf cell-free extract. The enzymatic products were detected via high-performance liquid chromatography. The results indicated the presence of norathyriol with an enzymatic activity of 3.89 µmoles/min/mg protein (64.83 nkat/mg protein) using gentisein as a substrate. The change in the peak area for mangiferin in the reaction was also presented. These results demonstrated that the enzymatic functions in the mango leaves extract catalyzed gentisein to norathyriol. Consequently, a potential strategy can be inferred for developing a biocatalytic process of norathyriol production.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Oriola AO, Kar P. Naturally occurring xanthones and their biological implications. Molecules 2024; 29: 4241. Doi: 10.3390/molecules2917424
2.Li J, Malakhova M, Mottamal M, Reddy K, Kurinov I, Carper A, Langfald A, Oi N, Kim MO, Zhu F, Sosa CP, Zhou K, Bode AM, Dong Z. Norathyriol suppresses skin cancers induced by solar ultraviolet radiation by targeting ERK kinases. Cancer Res. 2011;72(1):260–270.
3.Liu Y, Ma L, Chen WH, Park H, Ke Z, Wang B. Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-glucosidase inhibitors: a theoretical and experimental study. J Phys Chem B. 2013;117(43):13464-13471.
4.Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An update on the anticancer activity of xanthone derivatives: a review. Pharmaceuticals. 2021;14(11):1144. Doi: 10.3390/ph14111144.
5.Mehmood H, Mehmood J, Zulfiqar N. Exploring the phytochemistry and pharmacology of Mangifera indica L. (mango) leaves: A review. Int J Plant Based Pharm. 2024;4(1):9-18.
6.Da Silva Lopes FF, Lúcio FNM, Da Rocha MN, De Oliveira VM, Roberto CHA, Marinho MM, Marinho ES, De Morais SM. Structure-based virtual screening of mangiferin derivatives with antidiabetic action: a molecular docking and dynamics study and MPO-based drug-likeness approach. 3 Biotech.2024;14(5):135. Doi: 10.1007/s13205-024-03978-9.
7.Hasanah U, Miki K, Nitoda T, Kanzaki H. Aerobic bioconversion of C-glycoside mangiferin into its aglycone norathyriol by an isolated mouse intestinal bacterium. Biosci Biotechnol Biochem. 2021;85(4):989-997.
8.Shi ZL, Liu YD, Yuan YY, Song D, Qi MF, Yang XJ, Wang P, Li XY, Shang JH, Yang ZX. In vitro and in vivo effects of norathyriol and mangiferin on α-glucosidase. Biochem Res Int. 2017. Doi: 10.1155/2017/1206015.
9.Zhang HJ, Lan HQ, Wang MY, Wang CF, Wei LG, Xu C. Transcriptome analysis reveals norathyriol prolongs the
lifespan via regulating metabolism in C. elegans. Metabolites. 2024;14(12):716. Doi: 10.3390/metabo14120716.
10.Fuentes-Rios D, Sanchez-Rodriguez A, Lopez-Rios L, Garcia-Gonzalez E, Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, Martin-Rincon M, Calbet JAL, Vega-Morales T. Human pharmacokinetic profiling and comparative analysis of mangiferin and its monosodium derivative from Mangifera indica extracts using UHPLC-MS/MS with 1H NMR and MALDI-TOF confirmation. Molecules. 2025;30(3):461. Doi: 10.3390/molecules30030461.
11.Souza JRR, Trevisan MTS, Feitosa JPA, Ricardo NMPS, Hull WE, Erben G, Würtele G, Breuer A, Frei E, Ulrich CM, Owen RW. Transformation of mangiferin to norathyriol by human fecal matrix in anaerobic conditions: comprehensive NMR of the xanthone metabolites, antioxidant capacity, and comparative cytotoxicity against cancer cell lines. Nat Prod Commun. 2020; 15:1–9. Doi: 10.1177/1934578X20910286.
12.Remali J, Sahidin I, Aizat WM. Xanthone biosynthetic pathway in plants: a review. Front Plant Sci. 2022; 13. Doi: 10.3389/fpls.2022.809497.
13.Gu C, Yang M, Zhou Z, Khan A, Cao J, Cheng G. Purification and characterization of four benzophenone derivatives from Mangifera indica L. leaves and their antioxidant, immunosuppressive and α-glucosidase inhibitory activities. J Funct Foods. 2018; 52:709-714.
14.Happi GM, Ahmed SA, Kemayou GPM, Salau S, Dzouemo LC, Sikam KG, Yimtchui MT, Wansi JD. Bioassay-guided isolation of antiplasmodial compounds from Hypericum lanceolatum Lam. (Hypericaceae) and their cytotoxicity and molecular docking. Biomed Res Int. 2023. Doi: 10.1155/2023/4693765.
15.Rukachaisirikul V, Naklue W, Phongpaichit S, Towatana NH, Maneenoon K. Phloroglucinols, depsidones and xanthones from the twigs of Garcinia parvifolia. Tetrahedron 2006;62(36):8578-8585.
16.Schmidt W, Peters S, Beerhues L. Xanthone 6-hydroxylase from cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Phytochemistry 2000;53(4):427-431.
17.Ehianeta TS, Laval S, Yu B. Bio‐ and chemical syntheses of mangiferin and congeners. BioFactors. 2016;42(5):445-458.
18.Bitter J, Pfeiffer M, Borg AJE, Kuhlmann K, Pavkov-Keller T, Sánchez-Murcia PA, Nidetzky B. Enzymatic β-elimination in natural product O- and C-glycoside deglycosylation. Nat Commun. 2023; 14:7123. Doi: 10.1038/s41467-023-42750-0.
19.Bunt D, Schwalbe M, Hayeeawaema F, Aidy SE. Gut microbiota-mediated conversion of mangiferin to norathyriol alters short chain fatty acid and urate metabolism. Gut Microbes. 2025;17(1):2508422. Doi: 10.1080/19490976.2025.2508422.
20.Dkhar DS, Swain RP, Dubey R, Patel GK, Chandra P. Plant-derived enzymes as sustainable biocatalysts for biosensing and industrial applications. Ind Crops Prod. 2025; 233:121336. Doi: 10.1016/j.indcrop.2025.121336.
21.Yang J, Zaremba O, Andreo J, Gröger H, Wuttke S. Unravelling the potential of crude enzyme extracts for biocatalyst entrapment in metal-organic frameworks. ACS Nano. 2025;19(15):14817-14828.
22.Chlipała P, Matera A, Sordon S, Popłoński J, Mazur M, Janeczko T. Enzymatic glycosylation of 4′-hydroxychalcones: expanding the scope of nature’s catalytic potential. Int J Mol Sci. 2024; 25:11482. Doi: 10.3390/ijms252111482.
23.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254.
24.Campa C, Mondolot L, Rakotondravao A, Bidel LPR, Gargadennec A, Couturon E, La Fisca P, Rakotomalala J, Jay-Allemand C, Davis AP. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses. Ann Bot. 2012;110(3):595-613.
25.Tansakul P, De-Eknamkul W. Geranylgeraniol-18-hydroxylase: the last enzyme on the plaunotol biosynthetic pathway in Croton sublyratus. Phytochemistry. 1998:47(7):1241-1246.
26.Sanugul K, Akao T, Nakamura N, Hattori M. Two proteins, MN2+, and low molecular cofactor are required for C-glucosyl-cleavage of mangiferin. Biol Pharm Bull. 2005;28(11):2035-2039.
27.Stark T, Keller D, Wenker K, Hillmann H, Hofmann T. Nonenzymatic C-glycosylation of flavan-3-ols by oligo- and polysaccharides. J Agric Food Chem. 2007;55(23):9685-9697.
28.Fujita M, Inoue T. Biosynthesis of mangiferin in Anemarrhena asphodeloides Bunge. II. C-glucosylation of mangiferin. Chem Pharm Bull. 1980;28(8):2482-2486.
29.Chen D, Chen R, Wang R, Li J, Xie K, Bian C, Sun L, Zhang X, Liu J, Yang L, Ye F, Yu X, Dai J. Probing the catalytic promiscuity of a regio‐ and stereospecific C‐glycosyltransferase from Mangifera indica. Angew Chem Int Ed. 2015;54(43):12678-12682.
30.Sasaki N, Nemoto K, Nishizaki Y, Sugimoto N, Tasaki K, Watanabe A, Goto F, Higuchi A, Morgan E, Hikage T, Nishihara M. Identification and characterization of xanthone biosynthetic genes contributing to the vivid red coloration of red‐flowered gentian. Plant J. 2021;107(6):1711-1723.
31.Uchida K, Akashi T, Hirai MY. Identification and characterization of glycosyltransferases catalyzing direct xanthone 4‐C‐glycosylation in Hypericum perforatum. FEBS Lett. 2021;595(20):2608-2615.
32.Trevisan MTS, De Almeida RF, Soto G, De Melo Virginio Filho E, Ulrich CM, Owen RW. Quantitation by HPLC-UV of mangiferin and isomangiferin in coffee (Coffea arabica) leaves from Brazil and Costa Rica after solvent extraction and infusion. Food Anal Methods. 2016;9(9):2649-2655.
Bahrami A, Iliuta I, Garnier A, Larachi F, Vincent T, Iliuta MC. Kinetics of enzymatic hydroxylation by free and MNPs-immobilized NADH-dependent cytochrome P450 BM3 from Bacillus megaterium. Ind Eng Chem Res. 2018;58(2):808-815.


