LC-MS Identification of Bioactive Compounds from the Methanol Extract of Veitchia merrillii Seeds as Potential Antiviral Agents Targeting HIV-1 Protease, Integrase, and Reverse Transcriptase: An In Silico Study

Main Article Content

Rizq R. Ramiizah
Ahmad M. Sururi
Riska A. Sutriyansyah
Dyah A. Ramadhani
Ariij H. Tsana
Heti Kristyandari
Tukiran
Dwi A. Rahayu
Noorhidayah B. Mamat

Abstract

Human Immunodeficiency Virus type 1 (HIV-1) is one of the most dangerous viruses that attacks the immune system, causing acquired immune deficiency syndrome (AIDS). Enzymes such as protease (PR), integrase (IN), and reverse transcriptase (RT) are protein receptors that play crucial roles in the HIV replication process. Veitchia merrillii is a common ornamental plant in the Arecaceae family, with a high content of phenolic and flavonoid compounds. This study aimed to identify the compounds in the methanol extract of V. merrillii seeds that could be potential inhibitors of three receptors (protease, integrase, and reverse transcriptase) involved in HIV-1 replication. V. merrillii seed was extracted by maceration in methanol. Bioactive compounds in the extract were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The identified compounds were tested for their inhibitory activities against three HIV-1 enzymes using in silico studies. UPLC-MS analysis identified 39 compounds in the methanol extract of V. merrillii seeds. Molecular docking study revealed three compounds in the methanol extract of V. merrillii seeds, including epicatechin-3-O-gallate, 3-O-acetyl-16-α-hydroxydehydrotrametenol acid, and epigallocatechin gallate as potential inhibitors of three HIV-1 enzymes (protease, integrase, and reverse transcriptase) with binding affinities more stable than the control drugs. PASSOnline analysis found that these three potentially bioactive compounds have anti-HIV activity, thereby supporting the docking results. Further research, including in vitro and in vivo studies, are needed to substantiate the potential of this compound as an antiretroviral agent against HIV-1.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

LC-MS Identification of Bioactive Compounds from the Methanol Extract of Veitchia merrillii Seeds as Potential Antiviral Agents Targeting HIV-1 Protease, Integrase, and Reverse Transcriptase: An In Silico Study. (2025). Tropical Journal of Natural Product Research , 9(11), 5360 – 5370. https://doi.org/10.26538/tjnpr/v9i11.15

References

1.Elfianis R, Hartina S, Permanasari I, Handoko J. The effect of scarification and gibberellin hormone (GA3) on the germination rate and seedling growth of Veitchia merillii.. J Agroteknol. 2019; 10(1):41-48.

2.Lyn Gutierrez RV. Nutritional, Phytochemical Contents and Cytotoxicity of Bua China, Adonidia merrillii Fruits. Int J Chem Mater Sci. 2023; 8(1):1-19.

3.Energy Development Corporation. Adonidia merrillii (Manila Palm) The IUCN Red List of Threatened Species 2020. 2020. doi:10.2305/IUCN.UK.2020-3.RLTS.T38747A67530097.

4.Sutriyansyah RA, Tsana AH, Ramadhani DA, Kristyandari H, Ramiizah RR, Sururi AM, Anggorowati D. Character Morphology and Community Perception of the Veitchia merrillii Palm Tree Regarding Its Utilization in Gayungan District, Surabaya. In: Seminar Nasional Biologi "Inovasi Penelitian dan Pembelajaran Biologi VII (IP2B VII) 2023. Surabaya: Universitas Negeri Surabaya; 2023.

5.Adawiah A. Phytochemical Content and Bioactivity of Methanol Extract from Putri Palm Seeds (Veitchia merrillii). J Kim Val. 2016; 2(1):63-70.

6.Mardiyanto, Sandi S, Herlina, Kurniawan I. Nanoparticulate Formulatiom of Christmas Palm Seed (Adonidia merrillii) Ethanolic Extract Containing Lactic Acid for Antidiarrheal Therapy. J Phys Conf Ser. 2019; 1282:012084. doi:10.1088/1742-6596/1282/1/012084.

7.Iyasele JU, Uadia JO, Akhigbe IU, Jacob JN, Ogbeide OK. Physico-Chemical Properties, Chemical Composition and Antimicrobial Activity of Adonidia merrillii Kernel Seed Oil. Trop J Nat Prod Res. 2022; 6(4):599–605.

8.Vafaei A, Bin Mohamad J, Karimi E. HPLC Profiling of Phenolics and Flavonoids of Adonidia merrillii Fruits and Their Antioxidant and Cytotoxic Properties. Nat Prod Res. 2019; 33(17):2531–2535.

9.Antia BS, Essien EE, Udonkanga ED. Nutritional Composition and Acute Toxicity Potentials of Archontophoenix tukeri and Adonidia merrilli Kernels. Pharm Biosci J. 2017; 5(3):1-8.

10.Ogbeide OK, Omono ED, Ehizojie PO, Aiwonegbe AE, Uadia JO. Phytochemical Investigation, Anti-inflammatory and Analgesic Activities of Ethyl Acetate Extract of Pride of Barbados Pod (Caesalpinia pulcherrima). Tanzania J Sci. 2022; 48(3):548-558.

11.Uwishema O, Ayoub G, Badri R, Onyeaka H, Berjaoui C, Karabulut E, Anis H, Sammour C, Mohammed Yagoub FEA, Chalhoub E. Neurological Disorders in HIV: Hope Despite Challenges. Immunity, Inflamm Dis. 2022; 10(3):e591.

12.Planas D, Zhang Y, Monteiro P, Goulet JP, Gosselin A, Grandvaux N, Hope TJ, Fassati A, Routy JP, Ancuta P. HIV-1 Selectively Targets Gut-Homing CCR6+CD4+ T Cells via mTOR-Dependent Mechanisms. JCI Insight. 2017; 2(15):e93230. doi: 10.1172/jci.insight.93230.

13.WHO. HIV and AIDS. 2023. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. 2025.

14.Kim JG and Shan L. Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs. Viruses. 2022; 14(6):1179.

15.Maertens GN, Engelman AN, Cherepanov P. Structure and Function of Retroviral Integrase. Nat Rev Microbiol. 2022; 20(1):20–34.

16.Singh AK and Das K. Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses. 2022; 14(5):1027.

17.Sharma M, Gat Y, Arya S, Kumar V, Panghal A, Kumar A. A Review on Microbial Alkaline Protease: An Essential Tool for Various Industrial Approaches. Ind Biotechnol. 2019; 15(2):69-78.

18.Prabhu SR and van Wagoner N. Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome (HIV/AIDS): An Overview. In: Sex Transm Oral Dis. 2023:51–71. doi:10.1002/9781119826781.ch5.

19.Grandgenett DP, Pandey KK, Bera S, Aihara H. Multifunctional Facets of Retrovirus Integrase. World J Biol Chem. 2015; 6(3):83.

20.Craigie R. HIV Integrase, a Brief Overview from Chemistry to Therapeutics. J Biol Chem. 2001; 276(26):23213–23216.

21.Wang Y, Liu Z, Brunzelle JS, Kovari IA, Dewdney TG, Reiter SJ, Kovari LC. The Higher Barrier of Darunavir and Tipranavir Resistance for HIV-1 Protease. Biochem Biophys Res Commun. 2011; 412(4):737-742.

22.Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Tsantrizos Y. Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 2014; 5(4):422-427. doi:10.1021/ml500002n.

23.Ren J, Nichols CE, Stamp A, Chamberlain PP, Ferris R, Weaver KL, Short SA, Stammers DK. Structural Insights into Mechanisms of Non‐Nucleoside Drug Resistance for HIV‐1 Reverse Transcriptases Mutated at Codons 101 or 138. FEBS J. 2006; 273(16):3850-3860.

24.Abner E and Jordan A. HIV “Shock and Kill” Therapy: In Need of Revision. Antiviral Res. 2019; 166:19-34.

25.Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A Hardwired HIV Latency Program. Cell. 2015; 160(5):990-1001.

26.MacArthur RD. Darunavir: Promising Initial Results. Lancet. 2007; 369(9568):1143-1144.

27.Ghosh AK, Dawson ZL, Mitsuya H. Darunavir, a Conceptually New HIV-1 Protease Inhibitor for the Treatment of Drug-Resistant HIV. Bioorg Med Chem. 2007; 15(24):7576-7580.

28.Shimura K and Kodama EN. Elvitegravir: A New HIV Integrase Inhibitor. Antivir Chem Chemother. 2009; 20(2):79-85.

29.Das K, Martinez SE, Bauman JD, Arnold E. HIV-1 Reverse Transcriptase Complex with DNA and Nevirapine Reveals Non-Nucleoside Inhibition Mechanism. Nat Struct Mol Biol. 2012; 19(2):253-259.

30.Dallakyan S and Olson A. Small-Molecule Library Screening by Docking with PyRx. Methods Mol Biol. 2015; 1263:243-250.

31.Sururi AM, Maharani DK, Wati FA. Potensi Senyawa Eugenol dari Cengkeh (Syzygium aromaticum) Sebagai Inhibitor Protease HIV-1 (PR). Unesa J Chem. 2023; 12(1):26-30.

32.Weissbrich B, Heinkelein M, Jassoy C. Evaluation of drug resistance in HIV infection. 2002;58:157-202

33.Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D. The Structure of HIV-1 Reverse Transcriptase Complexed with 9-Chloro-TIBO: Lessons for Inhibitor Design. Structure. 1995; 3(9):915-926.

34.Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

35.Sururi AM, Raihan M, Aisa ER, Safitri FN, Constaty IC, Tukiran. Anti-inflammatory Activity of Stem Bark Dichloromethane Fraction Syzygium samarangense Extract as COX−2 Inhibitor: A Bioinformatics Approach. J Kim Ris. 2022; 7(2):94-100.

36.Trott O and Olson AJ. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010; 31(2):455-461.

37.Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V. Sanjeevini: A Freely Accessible Web-Server for Target Directed Lead Molecule Discovery. BMC Bioinformatics. 2012; 13 Suppl 17(Suppl 17):S7.

38.Lipinski CA. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov Today Technol. 2004; 1(4):337-341.

39.Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018; 46(W1):W257-W263.

40.Kurniawidjaja LM, Lestari F, Tejamaya M, Ramdhan DH. Basic Concepts of Industrial Toxicology. Fkm UI. 2021; 54–118.

41.Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the Biological Activity Spectra of Organic Compounds Using the PASS Online Web Resource. Chem Heterocycl Compd. 2014; 50:444-457.

42.Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: Prediction of Activity Spectra for Biologically Active Substances. Bioinformatics. 2000; 16(8):747-748.

43.Tukiran T, Sururi AM, Constanty IC. LC-MS Chemical Profiling of Dichloromethane Fraction of Methanol Extract of Syzygium samarangense Stem Bark. Trop J Nat Prod Res. 2024; 8(4):6963-6974.

44.Fiorelia NE, Wibowo AD, Lae NL, Krisbianto O. Types of High-Performance Liquid Chromatography (HPLC) Columns: A Review. FoodTech: J Teknol Pangan. 2022; 5(1):1-16.

45.Saibaba SV, Kumar MS, Pandiyan PS. Mini Review on LC/MS Techniques. World J Pharm Pharm Sci. 2016; 5(4):2381-2395.

46.Widiastuti NLGK. Integrated Science Education: The Interconnectedness of Chemical Bonding Concepts with Various Fields of Science. Widya Accarya. 2019; 10(2):777.

47.Arwansyah A, Ambarsari L, Sumaryada TI. Docking simulation of curcumin and its analogs as androgen receptor inhibitors in prostate cancer Curr Biochem. 2014; 1(1):11-19.

48.Hanif AU, Lukis PA, Fadlan A. The influence of MMFF94 energy minimization with MarvinSketch and open Babel PyRx on the molecular docking of substituted oxindole derivatives. ALCHEMY J Chem. 2020; 8(2):33-40.

49.Rambitan SR, Manampiring A, Kepel BJ, Budiarso F, Bodhi W. Molecular Docking of Vitexin, Ursolic Acid, and Flavonol Compounds in Binahong Plants (Andredera Cordifolia (Ten.) Steenis) with Potential as COVID-19 Growth Inhibitors. eBiomedik. 2021; 9(2):201-207.

50.Nugroho ED, Ardiansyah R, Kurniawan N, Widodo, Rahayu DA, Sururi AM. An In-silico Study on the Chemical Compounds from Macrophiothrix longipedia as Antiviral Compounds Against COVID−19. AACL Bioflux. 2023; 16(4):2380-2390.

51.Zhang MQ and Wilkinson B. Drug Discovery Beyond the ‘Rule-of-Five’. Curr Opin Biotechnol. 2007; 18(6):478-488.

52.Nasyanka AL, Ratnasari D, Na’imah J, Asiyah SN. In silico study: Toxicity of potential anticancer compounds derived from N-((4-Fluorophenyl)carbamothioyl)benzamide. J Pharm Care Anwar Med. 2023; 5(2):1-16.

53.Nursanti O, Aziz A, Hadisoebroto G. Predicting Toxicity and Pharmacokinetics to Obtain Analgesic Drug Candidates.. J NONCOMMUNICABLE Dis. 2023; 3:34.

54.Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26. doi:10.1016/S0169-409X(00)00129-0.

55.Tukiran T, Setiawan AR, Constaty IC, Safitri FN. The Potency of Java Apple (Syzygium samarangense) As α-Glucosidase and α-Amylase Inhibitor: An In-Silico Approach. Trop J Nat Prod Res. 2023; 7(8):3741-3755.

56.Zuraida Z, Sulistiyani S, Sajuthi D, Suparto IH. Phenol, flavonoid, and antioxidant activity in the bark extract of the pulai tree (Alstonia scholaris R. Br) J Penel Has Hutan. 2017; 35(3):211-219.

57.Athaillah F, Hambal M, Vanda H, Frengki F, Sari WE. In Vitro and In Silico Study on the Seeds of Veitchia merrillii on Trematode Worms. Vet World. 2024; 1336-1347. doi:10.14202/vetworld.2024.1336-1347.

58.Vafaei A. Antioxidant and Cytotoxicity Activities of Veitchia merrillii Fruits. Kuala Lumpur: Univ Malaya; 2013.