In vitro Antioxidant and Antidiabetic Potentials of Extracts of the Stem Bark of Cylicodiscus gabunensis (Harms) Mimosaceae

http://www.doi.org/10.26538/tjnpr/v6i11.19

Authors

  • Vincent O. Imieje Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria
  • Chika F. Onochie Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria
  • Bridget Nwaka Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria
  • Abiodun Falodun Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria

Keywords:

Acarbose, α-amylase, Antioxidant activity, Antidiabetic activity, Cylicodiscus gabunensis

Abstract

The study evaluated the antioxidant and antidiabetic activity of extracts of Cylicodiscus gabunensis (CG) by in vitro assay methods. The powdered plant material was successively extracted to yield n-hexane extract (CG-HX), ethyl acetate extract (CG-EA), and methanol extract (CG-ME), respectively. The crude extract (CG-TE) was separately obtained from methanol. Phytochemical screening revealed the presence of alkaloids, flavonoids, phenolic compounds, steroids, and reducing sugars. The total phenolic content (TPC) was highest in the CG-ME (122.559 mg GAE/g extract), followed by CG-TE (121.913 mg GAE/g extract), while the total flavonoids content (TFC) was highest in the CG-EA extract (159.351 mg QE/g). The percentage DPPH free radical scavenging assay shows that the potency of the CG-EA extract (95.4±0.40 %) was comparable to ascorbic acid (96.22±0.692 %), p˂0.05. In the ferric powerreducing antioxidant assay, CG-TE (2.246±0.1796) and CG-ME (2.140±0.1227) exhibited the highest antioxidant activity compared to others. The extracts significantly inhibited α-Amylase and glucose uptake in yeast cells in the in vitro study. This inhibitory potential was concentration-dependent with crude methanol extract (CG-TE) showing comparable inhibitory potency with Acarbose (45.7%) at 0.05 mg/mL but 40.10% at 4.00 g/mL as against 51.27 % for Acarbose. Similarly, CG-TE was more potent than metronidazole, with percentage glucose uptake inhibitory potency of 50.13% and 76.465% at concentrations of 0.05 mg/mL and 4.00 mg/mL, respectively. We conclude that the plant extracts possess significant antidiabetic activity, which correlated with the antioxidant effects and could be further investigated for use in
managing diabetes and related diseases. 

References

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2009; 32(Supplement_1):S62-7.

Vargas E, Joy NV, Carrillo Sepulveda MA. Biochemistry, Insulin Metabolic Effects. [Updated 2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525983/

Galtier F. Definition, epidemiology, risk factors. Diabetes Metab J. 2010; 36(6 Pt 2):628-651.

International Diabetes Federation. IDF Diabetes Atlas, 10th edn, Brussels Belgium: International Diabetes Federation, 2021.

Thota S, Akbar A. Insulin. [Updated 2022 Jul 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK560688/

Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals, 3(9):3005-3020.

Petrovska, B. B. Historical review of medicinal plants usage.Pharmacogn. Rev. 2012; 6(11):1-5.

Subhedar S & Goswami P. Ethnobotany and literature survey of herbal antidiabetic drugs. Int J Drug Discov Herbal Res.2011; 1(3):177-84.

Alhassan AJ, Lawal TA, Dangambo MA. Antidiabetic properties of thirteen local medicinal plants in Nigeria-a review. J. PharmaRes. 2017a; 6(8):2170-2189.

Ekperikpe US, Owolabi OJ, Olapeju BI. Effects of Parkia biglobosa aqueous seed extract on some biochemical, haematological, and histopathological parameters in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2019; 228:1-10.

Kouam J, Tane P, Alain ML, Noundou XS, Choudhary MI, & Fomum ZT. Coumestoside A, coumestoside B and erythrodiside A, three glycosides from Cylicodiscus gabunensis (Mimosaceae). Nat Prod Commun. 2007; 2(8): 1934578X0700200809.

Ayarkwa J and Owusu FW. Cylicodiscus gabunensis Harms. In: Louppe, D., Oteng-Amoako AA & Brink M (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). 2008; Wageningen, Netherlands. Accessed 6 March 2020.

Okokon JE, Ita BN, Udokpoh, AE. Antiplasmodial activity of Cylicodiscus gabunensis. J Ethnopharmacol. 2006; 107(2):175- 178.

Huang Z, Hashida K, Makino R, Kawamura F, Shim Izu K, Kondo R, Ohara S. Evaluation of biological activities of extracts from 22 African tropical wood species. J Woodsciss. 2009; 225- 229.

Ganiyu O, Adeniyi AA, Ayolanle A. Erection-Stimulating, Antidiabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water extra table phytochemicals. J Complement Integr Med. 2016; 0164.

Aldulaimi O, Drijfhout F, Uche FI, Horrocks P, & Li WW. Discovery, synthesis and antibacterial evaluation of phenolic compounds from Cylicodiscus gabunensis. BMC Complement Altern Med. 2019; 19(1):1-11.

Tchivounda HP, Koudogbo B, Besace Y, Casadevall E. Cylicodiscic acid, a dihydroxy pentacyclic triterpene carboxylic acid from Cylicodiscus gabunensis. Phytochem. 2019; 29(10):3255-3258.

Tane P, Bergquist KE, Téné M, Ngadjui BT, Ayafor JF, Sterner O. Cyclodione, an unsymmetrical dimeric diterpene from Cylicodiscus gabunensis. Tetrahedron. 1995; 51(42):11595- 11600.

Kouam J, Penlap BV, Ngadjui BT, Fomum ZT, Etoa FX. Evaluation of antimicrobial activity of the stem bark of Cylicodiscus gabunensis (Mimosaceae). Afr J Tradit Complement Altern Med. 2007; 4(1):87-93.

Sofowora EA. Medicinal Plants and Traditional Medicine in Africa. John Wiley and Sons Ltd., Hoboken. 1982; 64-79.

Trease GE and Evans WC. Pharmacognosy. 15th Edition, Saunders Publishers, London, 2002; 392-393.

Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem; 2003; 51(22):6509-6515.

Ebrahimzadeh MA, Hosseinimehr SJ, Hamidinia A, Jafari M. Antioxidant and free radical scavenging activity of Feijoa sellowiana fruits peel and leaves. Pharmacologyonline. 2008; 1:7-14.

Jain A, Soni M, Deb L, Jain A, Rout S, Gupta V, Krishna K. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. J Ethnopharmacol. 2008; 115(1):61-66.

Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal. 2007; 20:337-345.

Vijayalakshmi M and Ruckmani K. Ferric reducing antioxidant power assay in plant extract. Bangladesh J Pharmacol. 2016; 11(3):570-572.

Wickramaratne MN, Punchihewa JC, Wickramaratne DBM. Invitroalpha-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med. 2016; 16(1):1-5.

Cirillo VP, Wilkins PO, Anton J. Sugar transport in a psychrophilic yeast. J. Bacteriol. 1963; 86(6):1259-1264.

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009; 32 Suppl 1(Suppl 1):S62-7.

Khadayat K, Marasini BP, Gautam H, Ghaju S, & Parajuli N. Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus. Clin Phytoscience. 2020; 6(1):1-8.

Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol. 2005; 4(1):1-11.

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomark. 2013.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010; 4(8):118.

Golbidi S, Alireza ES, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev. 2011; 7(2):106-125.

Glatthaar BE, Hornig DH, Moser U. The role of ascorbic acid in carcinogenesis. Adv. Exp. Med. Biol. 1996; 206:357–377.

Newman DJ, & Cragg GM (2016). Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2006; 79(3):629- 661.

Jimenez-Garcia SN, Vazquez-Cruz MA, Garcia-Mier L, Contreras-Medina LM, Guevara-González RG, Garcia-Trejo JF, & Feregrino-Perez AA. Phytochemical and Pharmacological Properties of Secondary Metabolites in Berries. Therapeutic Foods. 2018; 397-427.

Srividhya M, Hridya H, Shanth V, & Ramanathan K. Bioactive Amentoflavone isolated from Cassia fistula L. leaves exhibits therapeutic efficacy. Biotech. 2017; 7(1):1-5.

Burits M & Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res . 2000; 14(5):323-328.

Ou S, Kwok KC, Li Y, Fu L. In vitro study of possible role of dietary fiber in lowering post-prandial serum glucose. J. Agri. Food Chem. 2001; 49(2):1026-1029.

Guo H, Saravanakumar K, Wang M. Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of Stachys affinis. Biocatalysis and Biocatal. Agric. Biotechnol.2018; 15:235-239.

Horvathova K, Novotny L, Vachalkova A. The free radical scavenging activity of four flavonoids determined by the comet assay. Neoplasma. 2003; 50(4):291-295.

Aviram M and Fuhrman B. Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann N. Y. Acad Sci. 2002; 957(1):146-161.

Brand W, Padilla B, van Bladeren PJ, Williamson G, & Rietjens IM. The effect of co‐administered flavonoids on the metabolism of hesperetin and the disposition of its metabolites in Caco‐2 cell monolayers. Mol Nutr Food Res. 2010. 54(6):851-860.

Lee KH. Novel antitumor agents from higher plants. Med Res Rev. 1999; 19(6):569-596.

Sampson L, Rimm E, Hollman PC, de Vries JH & Katan MB. Flavonol and flavone intakes in US health professionals. J. Am. Diet. Assoc. 2002; 102(10):1414-1420.

Sánchez‐Moreno C, Larrauri JA & Saura‐Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric.1998; 76(2):270-276.

Zujko ME and Witkowska AM. Antioxidant potential and polyphenol content of selected food. Int J Food Prop. 2011; 14(2):300-308.

McIver LA, Preuss CV, Tripp J. Acarbose. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 29630266.

Kumar B, Dinesh & Mitra, Analava, Mahadevappa, Manjunatha. (2010). A comparative study of alpha-amylase inhibitory activities of common antidiabetic plants at Kharagpur 1 block. Int. J. Green Pharm. DOI: 10.4103/0973-8258.63887.

Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev.2011; 5(9):19.

Cuatrecasas P. Insulin-receptor interactions in adipose tissue cells: direct measurement and properties. PNAS, USA. 1971; 68(6):1264-1268.

Teusink B, Diderich JA, Westerhoff HV, Van Dam K, Walsh MC. Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J Bacteriol. 1998; 180(3):556-562.

Downloads

Published

2022-11-01

How to Cite

Imieje, V. O., Onochie, C. F., Nwaka, B., & Falodun, A. (2022). In vitro Antioxidant and Antidiabetic Potentials of Extracts of the Stem Bark of Cylicodiscus gabunensis (Harms) Mimosaceae: http://www.doi.org/10.26538/tjnpr/v6i11.19. Tropical Journal of Natural Product Research (TJNPR), 6(11), 1858–1863. Retrieved from https://www.tjnpr.org/index.php/home/article/view/1239

Most read articles by the same author(s)