Phytochemical Constituents of the Leaves of Landolphia owariensis

doi.org/10.26538/tjnpr/v3i8.2

Authors

  • Nneka N. Ibekwe Department of Medicinal Chemistry and Quality Control, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria.
  • Victor O. Akoje Department of Medicinal Chemistry and Quality Control, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria.
  • John O. Igoli Department of Chemistry, University of Agriculture, Makurdi, Nigeria

Keywords:

Landolphia owariensis, Apocynaceae,, myricitrin,, quercitrin,, α-amyrin, daucosterol.

Abstract

Landolphia owariensis is a plant common in West Africa with many ethnomedicinal uses. The leaves of the plant were investigated for phytochemical constituents. Successive extraction and chromatographic purification led to the isolation of two flavonoid glycosides myricitrin and quercitrin, and the triterpenoid and sterol glucoside, α-amyrin and daucosterol, respectively. The compounds were identified by their NMR chemical shifts and comparison with literature reports.

References

Bouquet A. Feticheur et Medicines Traditionelle du Congo (Brazzaville). Mem ORSTOM. 1969; 32:25-27.

Gill LS. Ethnomedicinal Uses of Plants in Nigeria. (1st ed.). Benin City: Uniben Press; 1992. 145 p.

Burkill, HM. The useful plants of West Tropical Africa (vol 1). 1985. 162-185 p.

Irvine FR. The Woody plants of Ghana. London: Oxford University Press; 1961.

Dalziel JM. Useful plants of West Tropical Africa. London: Crown Agents for the colonies; 1937. 374 p.

Owoyele BV, Olaleye SB, Oke JM, Elegbe RA. Anti- inflammatory and analgesic activities of leaf extracts of L. owariensis. Afr J Biomed Res. 2001; 4:131-133.

Olaleye SB, Owoleye, VB, Odukanmi AO. Antiulcer and gastric antisecretory effects of Landolphia owariensis in rats. Nig J Physiol Sci. 2008; 23(1-2):23.

Ebi GC and Ofoefule SI. Investigations into the folkloric anti- microbial activities of Landolphia owariensis. Phytother Res. 1997; 11(2): 149 –151.

Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO. Evaluation of extracts of Landolphia owariensis for antimicrobial activity. J Ethnopharmacol. 2001; 78:119 – 127.

Nwaogu LA, Alisi CS, Ibegbulem CO, Igwe C. Phytochemical and antimicrobial activity of ethanolic extract of Landolphia owariensis leaf. Afr J Biotech. 2007; 6(7):890-893.

Okonkwo TJN, Osadebe PO, Proksch P. Bioactive phenylpropanoids, phenolic acid and phytosterol from Landolphia owariensis P. Beauv stringy seed pulp. Phytother Res. 2016; 30(1):78-83.

Moradkhani S, Kobarfard F, Ayatollahi SAM. Phytochemical investigations on chemical constituents of Achillea tenuifolia Lam. Iran J Pharm Res. 2014; 13(3):1049–1054.

Saeed MA and Sabir AW. Irritant potentials of some constituents from the seeds of Caesalpinia bonducella (L.) Fleming. J Asia Nat Prod Res. 2003; 5(1):35-41.

Sobeh M, Petruk G, Osman S, El Raey MA, Imbimbo P, Monti DM, Wink M. Isolation of myricitrin and 3,5-di-O-Methyl gossypetin from Syzygium samarangense and evaluation of their involvement in protecting keratinocytes against oxidative stress via activation of the Nrf-2p pathway. Molecules 2019; 24(9): 1839.

Bose S, Maji S, Chakraborty P. Quercitrin from Ixora coccinea leaves and its antioxidant activity. J Pharma Sci Tech. 2013; 2(2):72-74.

Lee JH, Lee JY, Park JH, Jung HS, Kim JS, Kang SS, Kim YS, Han Y. Immunoregulatory activity by daucosterol, a beta- sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 2007; 25:3834–3840.

Choi JN, Choi YH, Lee JM, Noh IC, Park JW, Choi WS, Choi JH. Anti-inflammatory effects of beta-sitosterol-beta-D- glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat Prod Res. 2012; 26:2340–2343.

Jiang LH, Yang NY, Yuan XL, Zou YJ, Zhao FM, Chen JP, Wang MY, Lu DX. Daucosterol promotes the proliferation of neural stem cells. J Steroid Biochem Mol Biol. 2014; 140:90–99.

Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via wnt/β-catenin signaling. Molecules 2017; 22:862.

Wang GQ, Gu JF, Gao YC, Dai YJ. Daucosterol inhibits colon cancer growth by inducing apoptosis, inhibiting cell migration and invasion and targeting caspase signalling pathway. Bangladesh J Pharmacol. 2016; 11:395–401.

Santos FA, Frota JT, Arruda BR, Sousa de Melo T, Almeida da Silva AA, Brito GA, Chaves MH, Rao VS. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis 2012; 11:98.

Vázquez LH, Palazon J, Navarro-Ocaña A. The pentacyclic triterpenes, α, β-amyrins: A review of sources and biological activities: Phytochemicals - A Global Perspective of Their Role in Nutrition and Health, Rao V (Ed.), InTech, 2012. 487-502 p.

Wu JH, Huang CY, Tung YT, Chang ST. Online RP-HPLC- DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa, J Agric Food Chem. 2008; 56:328–332.

Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine–nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther. 2006; 316:789–796.

Shimosaki S, Tsurunaga Y, Itamura H, Nakamura M. Anti- allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts in vitro and in vivo, Nat Prod Res. 2011; 25:374– 380.

Domitrovic R, Rashed K, Cvijanovic´ O, Vladimir-Knezˇevic´ S, Škoda M, Višnic´ A. Myricitrin exhibits antioxidant, anti- inflammatory and antifibrotic activity in carbon tetrachloride- intoxicated mice. Chem-Biol Interact. 2015; 230:21–29.

Gálvez J, Crespo ME, Jiménez J, Suárez A, Zarzuelo A. Antidiarrhoeic activity of quercitrin in mice and rats. J Pharm Phamacol. 1993; 45(2):157-159.

Li X, Wang QJT, Liu J, Chen D. Comparison of the antioxidant effects of quercitrin and isoquercitrin: understanding the role of the 6″-OH group. Molecules 2016; 21(9):1246.

Camuesco D, Comalada M, Rodríguez‐Cabezas ME, Nieto A, Lorente MD, Concha A, Zarzuelo A, Gálvez J. The intestinal anti‐inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol. 2004; 143:908– 918.

Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Glvez J, Zarzuelo A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down- regulation of the NF-jB pathway. Eur J Immunol. 2005; 35:584– 592.

Downloads

Published

2019-08-01

How to Cite

N. Ibekwe, N., O. Akoje, V., & O. Igoli, J. (2019). Phytochemical Constituents of the Leaves of Landolphia owariensis: doi.org/10.26538/tjnpr/v3i8.2. Tropical Journal of Natural Product Research (TJNPR), 3(8), 261–264. Retrieved from https://www.tjnpr.org/index.php/home/article/view/994