Characterization and Anti-Candida Activity of the Endophytic Streptomyces Isolated from Asystasia gangetica

doi.org/10.26538/tjnpr/v5i5.4

Authors

  • Duongkamol Phongsopitanun Department of Medical Services, Institute of Dentistry, Nonthaburi 11000, Thailand
  • Paranee Sripreechasak Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131, Thailand
  • Kanyanat Piewpong Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
  • Wongsakorn Phongsopitanun Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
  • Esthera Prateeptongkum Department of Medical Services, Institute of Dentistry, Nonthaburi 11000, Thailand

Keywords:

Actinobacteria, Endophyte, Candidiasis, Streptomyces

Abstract

Oral candidiasis, or oral thrush, is a common fungal infection of the oral cavity caused by the Candida species. This infection can cause oral discomfort, pain, and loss of appetite. Because of the increase in antifungal resistance among Candida species, alternative antifungal compounds are required to be developed. Actinobacteria, specifically the Streptomyces species, are well known as producers of bioactive compounds and play an important role in drug discovery. The endophytic actinobacteria strain 5R010, isolated from the root of Asystasia gangetica, was identified using phenotypic properties and 16S rRNA gene analysis. The spiral spore chains were observed on the aerial mycelia of strain 5R010. LL-diaminopimelic acid was detected in the whole-cell hydrolysate. The strain showed the closest 16S rRNA gene similarity of 99.72% with Streptomyces sioyaensis as well as sharing the same node with sioyaensis in the phylogenetic tree. On the basis of the agar disc diffusion method, the crude ethyl acetate extract of strain 5R010 showed inhibitory activity against seven tested Candida species including Candida albicans TISTR 5554, Candida glabrata TISTR 5006, Candida guilliermondii TISTR 5206, Candida krusei TISTR 5351, Candida parapsilosis TISTR 5007, Candida pseudotropicalis TISTR 5336, and Candida tropicalis TISTR 5268. Based on the results obtained from this study, S. sioyaensis 5R010 can be employed in further research involving the isolation of antifungal agents. 

References

Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms. 2020; 8:857.

Garcia-Cuesta C, Sarrion-Pérez M-G, Bagán JV. Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 2014; 6:e576-582.

Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel). 2020; 6:15.

Lekshmi L, Anithalekshimi MR, Abraham L, Nair MM, Aniyan N, Nair NM, Varghese R, Abraham S. Oral candidiasis-review. Int J Res Pharm Nano Sci. 2015; 4:409-417.

Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol. 2015; 6:1319.

Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics (Basel). 2020; 9:312.

Soliman SSM, Semreen MH, El-Keblawy AA, Abdullah A, Uppuluri P, Ibrahim AS. Assessment of herbal drugs for promising anti-Candida activity. BMC Compl Altern Med. 2017; 17:257

Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W, Inahashi Y, Matsumoto A, Tanasupawat S. Streptomyces mimosae sp. nov., an endophytic actinomycete isolated from the root of Mimosa pudica in Thailand. Int J Syst Evol Microbiol. 2020; 70:3316-3322.

Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W, Pittayakhajonwut P, Tanasupawat S. Microbispora catharanthi sp. nov., a novel endophytic actinomycete isolated from the root of Catharanthus roseus. Int J Syst Evol Microbiol. 2020; 70:964-970.

Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W, Pittayakhajonwut P, Tanasupawat S. Nonomuraea phyllanthi sp. nov., an endophytic actinomycete isolated from the leaf of Phyllanthus amarus. Arch Microbiol. 2020; 202:55-61.

White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalski KP. Review: Endophytic microbes and their potential applications in crop management. Pest Manag Sci. 2019; 75:2558-2565.

Matsumoto A and Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot. 2017; 70:514-519.

Phongsopitanun W, Sripreechasak P, Rueangsawang K, Panyawut R, Pittayakhajonwut P, Tanasupawat S. Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants. Sci Asia. 2020; 46:288-296.

Kelly KL .Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors .Washington DC :US Government Printing Office; 1964.

Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983; 29:319-322.

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017; 67:1613-1617.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018; 35:1547-1549.

Borman AM, Muller J, Walsh-Quantick J, Szekely A, Patterson Z, Palmer MD, Fraser M, Johnson EM. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. J Antimicrob Chemother. 2020; 75:1194-1205.

Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution. 1985 39:783-791.

Lechevalier MP and Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Microbiol. 1970; 20:435-443.

Sasaki T, Igarashi Y, Saito N, Furumai T. Cedarmycins, A., and B, new antimicrobial antibiotics from Streptomyces sp. TP-A0456. J Antibiot. 2001; 54:567-572.

Nishimura H, Okamoto S, Mayama M, Ohtsuka H, Nakajima K, Tawara K, Shimohira M, Shimaoka N. Siomycin, a new thiostrepton-like antibiotic. J Antibiot. 1961; 14:255-263.

Tokura M, Tori K, Yoshimura Y, Okabe K, Otsuka H, Matsushita K, Inagaki F, Miyazawa T. The structure of siomycin-D1, peptide antibiotic isolated from Streptomycessioyaensis. J Antibiot. 1980; 33:1563-1567.

Ikeda Y, Gomi S, Yokose K, Naganawa H, Ikeda T, Manabe M, Hamada M, Kondo S, Umezawa H. A new streptomycin group antibiotic produced by Streptomycessioyaensis. J Antibiot. 1985; 38:1803-1805.

Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. Altemicidin, a new acaricidal and antitumor substance I. taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot. 1989; 42:1556-1561.

Hino M, Kino E, Komori T, Kohsaka M. Studies on a new antibiotic FR-900336 Taxonomy Isolation and characterization. J Antibiot. 1984; 37:303-308.

Hong T-Y, Cheng C-W, Huang J-W, Meng M. Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a Cterminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan. Microbiol. 2002; 148:1151-1159.

Nakaew N, Lumyong S, Sloan WT, Sungthong R. Bioactivities and genome insights of a thermotolerant antibiotics-producing Streptomyces sp. TM32 reveal its potentials for novel drug discovery. Microbiologyopen. 2019; 8:e842.

Downloads

Published

2021-05-01

How to Cite

Phongsopitanun, D., Sripreechasak, P., Piewpong, K., Phongsopitanun, W., & Prateeptongkum, E. (2021). Characterization and Anti-Candida Activity of the Endophytic Streptomyces Isolated from Asystasia gangetica: doi.org/10.26538/tjnpr/v5i5.4. Tropical Journal of Natural Product Research (TJNPR), 5(5), 819–824. Retrieved from https://www.tjnpr.org/index.php/home/article/view/580