Ophidian Bite: The Balance between Perception, Idealism and Realism

doi.org/10.26538/tjnpr/v5i7.1

Authors

  • Sunil Shewale Department of Pharmacology Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, University of Pune, Maharashtra, India
  • Vaishali Undale Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences, & Research, University of Pune, Maharashtra, India
  • Sohan Chitlange Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, University of Pune, Maharashtra, India
  • Hitt Sharma Department of Clinical Research & Pharmacovigilance, Serum Institute of India Pvt. Ltd., Pune, Maharashtra, India

Keywords:

Snakes, Antivenom, Traditional medicine, Snake envenomation

Abstract

Snakebite envenomation associated toxicity and death is an important and widely underestimated health issue in the African, Asian and some American provinces. It usually has great impact on larger population especially from remote, poorly developed tropical communities with the lowest quality of life indices. The only treatment available for this Neglected Tropical Disease (NTD) is the anti-snake venom (ASV) that has limitations for its usage due to its availability, affordability and associated adverse events. Hence, enhancement of current therapeutic regime and addition of multiple treatment options for snakebite management is inevitable to reduce the mortality and morbidity. The folk and traditional medicines especially plants, as herbal antidotes against snake bite have been in use for centuries with notable success. However, a comprehensive and ethnopharmacological approach is essential to study the various plants and their bioactive components needed to treat snakebite. The review aims to provide compiled information about snake envenomation, biomoleculesinvolved in mechanism of toxicity along with various plants and their constituents useful against snake bite. Related literature available on the various search engines as Google, Google Scholar, PubMed, Medline database, Science Direct, Research Gate were explored and thoroughly read for compilation of information. The review endeavored to provide in-depth knowledge about snake envenomation and its treatment strategies with focus on medicinal plants and its bioactive compounds useful to mitigate venom and future perceptions. It will surely help researchers in the field for development of better treatment options for snakebite envenomation and associated complications.

References

World Health Organization. Snakebite envenoming. Key facts. [Online]. 2021. [cited 2021 May 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/snakebiteenvenoming.

Gupta YK, Peshin SS. Do Herbal Medicines have potential for managing snakebite envenomation? Toxicol Int. 2012; 19(2): 89-99.

Musah Y, Ameade EPK, Attuquayefio DK, Holbech LH. Epidemiology, ecology and human perceptions of snakebites in a savanna community of northern Ghana. PLoS Negl Trop Dis. 2019; 13(8): e0007221.

Chippaux JP, Akaffou MH, Allali BK, Dosso M, Massougbodji A, Barraviera B. The 6(th) international conference on envenomation by Snakebites and Scorpion Stings in Africa: a crucial step for the management of envenomation. J Venom Anim Toxins Incl Trop Dis. 2016; 22(11): 1-3.

Müller GJ, Modler H, Wium CA, Veale DJH, Marks CJ. Snake bite in southern Africa: diagnosis and management. Cont Med Edu. 2012; 30(10): 362-381.

da Silva JL, da Siva AM, do Amaral GLG, Ortega GP, Monteiro WM, Bernarde PS. The deadliest snake according to ethnobiological perception of the population of the Alto Juruá region, western Brazilian Amazonia. Rev Soc.Bras Med Trop. 2020; 53: e20190305.

Chippaux JP. Goyffon M. Venomous and poisonous animals. I. Overview. Med Trop (Mars). 2006; 66(3): 215-220.

World Health Organization. Guidelines for the Management of Snake-Bites [Online]. 2016. [cited 2020 Jan 28]. Available from: https://apps.who.int/iris/handle/10665/249547.

Félix-Silva J, Silva-Junior AA, Zucolotto SM, FernandesPedrosa MF. Medicinal Plants or the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence. Evid-Based Compl Altern Med. 2017; 2017: 5748256.

Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, Bongomin O. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. Trop Med Health. 2020; 48(6): 1-16.

Sivaraman T, Sreedevi NS, Meenachisundharam S, Vadivelan R. Neutralizing potential of Rauvolfia serpentina root extract against Naja naja venom. Braz J Pharm Sci. 2020; 56: e18050.

Giovannini P, Howes MR. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. J Ethnopharmacol. 2017; 199: 240-256.

Upasani SV, Beldar VG, Tatiya AU, Upasani MS, Surana SJ, Patil DS. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr Med Res. 2017; 6(2): 114-130.

Aldridge R and Sever D. Reproductive Biology and Phylogeny of Snakes. (1st Ed.) Boca Raton: CRC Press; 2011. 19-53 p.

Govender I and Tumbo J. The Management of snakebites in South Africa. S Afr Fam Pract. 2019; 61(3): 51-58.

Kochar DK, Tanwar PD, Norris RL, Sabir M, Nayak KC, Agrawal TD, Purohit VP, Kochar A, Simpson ID. Rediscovery of severe saw-scaled viper (Echis sochureki) envenoming in the Thar desert region of Rajasthan, India. Wilderness Environ Med Summer 2007; 18(2): 75-85.

Joseph JK, Simpson ID, Menon NC, Jose MP, Kulkarni KJ, Raghavendra GB, Warrell DA. First authenticated cases of lifethreatening envenoming by the hump-nosed pit viper (Hypnale hypnale) in India. Trans R Soc Trop Med Hyg. 2007; 101(1): 85-90.

World Health Organization. Snakebite. [Online]. 2010. [cited 2020 May 15]. Available from: https://www.who.int/docs/default-source/searo/india/healthtopic-pdf/who-guidance-on-management-ofsnakebites.pdf?sfvrsn=5528d0cf_2

World Health Organization. Guidelines for the production control and regulation of Snake Antivenom Immunoglobulins. [Online]. 2010. [cited 2020 May 15]. Available from: https://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguide/en/.

Casewell NR, Jackson TNW, Laustsen AH, Sunaga K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci. 2020; 41(8): 570-581.

School of Chemistry. University of Bristol. Snake Venom. [Online]. 2020. [cited on 2020 May 16]. Available from: http://www.chm.bris.ac.uk/webprojects2003/stoneley/types.htm

Tasoulis T and Isbister GK. A review and database of snake venom proteomes. Toxins (Basel). 2017 Sep 18; 9(9): 290.

Sanz L, Pérez A, Quesada-Bernat S, Diniz-Sousa R, Calderón LA, Soares AM, Calvete JJ, Caldeira CAS. Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. J Venom Anim Toxins Incl Trop Dis. 2020; 26: e20190103.

Sanhajariya S, Duffull SB, Isbister GK. Pharmacokinetics of Snake Venom. Toxins (Basel). 2018; 10(2): 73.

Hia YL, Tan KY, Tan CH. Comparative venom proteomics of banded krait (Bungarus fasciatus) from five geographical locales: Correlation of venom lethality, immunoreactivity and antivenom neutralization. Acta Trop. 2020; 207: 105460.

Lang Balija M, Leonardi A, Brgles M, Sviben D, Kurtović T, Halassy B, Križaj I. Biological Activities and Proteomic Profile of the Venom of Vipera ursinii ssp., a very Rare Karst Viper from Croatia. Toxins (Basel). 2020; 12(3): 187.

Vanuopadath M, Shaji SK, Raveendran D, Nair BG, Nair SS. Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Int J Biol Macromol. 2020; 148: 1029-1045.

Kumkate S, Chanhome L, Thiangtrongjit T, Noiphrom J, Laoungboa P, Khow O, Vasaruchapong T, Sitprija S, Chaiyabutr N, Reamtong O. Venomics and Cellular Toxicity of Thai Pit Vipers (Trimeresurus macrops and T. hageni). Toxins (Basel). 2020; 12(1): 54.

Cristina RT, Kocsis R, Tulcan C, Alexa E, Boldura OM, Hulea CI, Dumitrescu E, Radulov I, Muselin F. Protein structure of the venom in nine species of snake: from bio-compounds to possible healing agents. Braz J Med Biol Res. 2020; 53(1): e9001.

Xiao H, Pan H, Liao K, Yang M, Huang C. Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. Biomed Res Int. 2017; 2017: 6592820.

Costa TR, Carone SEI, Tucci LFF, Menaldo DL, Rosa-Garzon NG, Cabral H, Sampaio SV. Kinetic investigations and stability studies of two Bothrops L-amino acid oxidases. J Venom Anim Toxins Incl Trop Dis. 2018; 24: 37.

Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: L-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013; 62: 75–82.

Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu. Rev. Anim. Biosci. 2020; 8: 91-116.

Bickler PE. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins (Basel). 2020 Jan 22; 12(2): 68.

Vikrant S, Jaryal A, Parashar A. Clinicopathological spectrum of snake bite-induced acute kidney injury from India. World J Nephrol. 2017 May 6; 6(3): 150-161.

Silva A, Hodgson W, Isbister G. Antivenom for Neuromuscular Paralysis Resulting from Snake Envenoming. Toxins 2017; 9(4): 143.

Shriwas H, Chandrakar R. Conceptual study of snake bite and its management. World J. Pharm. Res. 2018; 7(15): 191-202.

Anghore D, Sharma A, Singh S, Kosey S, Jindal S. Treatment of Snake Bite in India: A Review. Int J Pharm Teach Pract. 2015; 6(4): 2635-2641.

Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins. 2018; 10(11): 452.

Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH. History of Envenoming Therapy and Current Perspectives. Front Immunol. 2019; 10: 1598.

Silva A, Isbister GK. Current research into snake antivenoms, their mechanisms of action and applications. Biochem Soc Trans. 2020; 48(2): 537-546.

Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. IgY-based

antivenom against Bothrops alternatus: production and neutralization efficacy. Toxicon. 2019; 163: 84-92.

Paul K, Manjula J, Deepa EP, Selvanayagam ZE, Ganesh KA, Subba Rao PV. Anti-Echis carinatus venom antibodies from chicken egg yolk: isolation, purification and neutralization efficacy. Toxicon. 2007; 50(7): 893-900.

Tanwar PD, Ghorui SK, Kochar SK, Singh R, Patil V. Production and preclinical assessment of camelid immunoglobulins against Echis sochureki venom from desert of Rajasthan, India. Toxicon. 2017; 134: 1-5.

Cook DA, Owen T, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid antibodies for antivenom development: neutralisation of venom-induced pathology. Toxicon. 2010; 56(3): 373-80.

Leong PK, Tan NH, Fung SY, Sim SM. Cross neutralisation of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms. Trans R Soc Trop Med Hyg. 2012: 106(12): 731-7.

Warrell DA, Gutiérrez JM, Calvete JJ, Williams D. New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J Med Res. 2013; 138(1): 38-59.

Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel). 2017; 9(5): 163.

Ariaratnam CA, Sjöström L, Raziek Z, Kularatne SA, Arachchi RW, Sheriff MH, Theakston RD, Warrell DA. An open, randomized comparative trial of two antivenoms for the treatment of envenoming by Sri Lankan Russell’s viper (Daboia russelii). Trans. R. Soc. Trop. Med. Hyg. 2001; 95(1): 74-80.

Dart RC, Seifert SA, Boyer LV, Clark RF, Hall E, McKinney P, McNally J, Kitchens CS, Curry SC, Bogdan GM, Ward SB, Porter RS. A randomized multicenter trial of crotalinae polyvalent immune Fab (Ovine) antivenom for the treatment for crotaline snakebite in the United States. Arch. Intern. Med. 2001; 161(21): 2030-2036.

Ha TH, Höjer J, Trinh XK, Nguyen TD. A controlled clinical trial of a novel antivenom in patients envenomed by Bungarus multicinctus. J Med Toxicol 2010; 6(4): 393-397.

Agarwal R, Aggarwal AN, Gupta D, Behera D, Jindal SK. Low dose of snake antivenom is as effective as high dose in patients with severe neurotoxic snake envenoming. Emerg. Med. J. 2005; 22(6): 397-399.

Gerardo CJ, Quackenbush E, Lewis B, Rose SR, Greene S, Toschlog EA, Charlton NP, Mullins ME, Schwartz R, Denning D, Sharma K, Kleinschmidt K, Bush SP, Ryan S, Gasior M, Anderson VE, Lavonas EJ. The Efficacy of Crotalidae Polyvalent Immune Fab (Ovine) Antivenom Versus Placebo Plus Optional Rescue Therapy on Recovery From Copperhead Snake Envenomation: A Randomized, Double-Blind, PlaceboControlled, Clinical Trial. Ann Emerg Med. 2017; 70(2): 233-244.e3.

Bush SP, Ruha AM, Seifert SA, Morgan DL, Lewis BJ, Arnold TC, Clark RF, Meggs WJ, Toschlog EA, Borron SW, Figge GR, Sollee DR, Shirazi FM, Wolk R, de Chazal I, Quan D, García-Ubbelohde W, Alagón A, Gerkin RD, Boyer LV. Comparison of F(ab')2 Versus Fab Antivenom for Pit Viper Envenomation: A Prospective, Blinded, Multicenter, Randomized Clinical Trial. Clin Toxicol (Phila). 2015; 53(1):

-45.

Mullins ME, Gerardo CJ, Bush SP, Rose SR, Greene S, Quackenbush EB, Lewis B, Anderson VE, Kleinschmidt KC, Schwarz RB, Charlton NP, Toschlog EA, Sharma K, Denning DA, Lavonas EJ. Adverse Events in the Efficacy of Crotalidae Polyvalent Immune Fab Antivenom vs Placebo in Recovery From Copperhead Snakebite Trial. South Med J. 2018; 111(12): 716-720.

Boyer LV, Chase PB, Degan JA, Figge G, Buelna-Romero A, Luchetti C, Alagón A. Subacute coagulopathy in a randomized, comparative trial of Fab and F(ab')2 antivenoms. Toxicon. 2013; 74: 101-108.

Isbister GK, Jayamanne S, Mohamed F, Dawson AH, Maduwage K, Gawarammana I, Lalloo DG, de Silva HJ, Scorgie FE, Lincz LF, Buckley NA. A randomized controlled trial of fresh frozen plasma for coagulopathy in Russell'sviper (Daboia russelii) envenoming. J Thromb Haemost. 2017; 15(4): 645-654.

Alirol E, Sharma SK, Ghimire A, Poncet A, Combescure C, Thapa C, Paudel VP, Adhikary K, Taylor WR, Warrell D, Kuch U, Chappuis F. Dose of antivenom for the treatment of snakebite with neurotoxic envenoming: Evidence from a randomised controlled trial in Nepal. LoS Negl Trop Dis. 2017; 11(5): e0005612.

Mendonça-da-Silva I, Magela Tavares A, Sachett J, Sardinha JF, Zaparolli L, Gomes Santos MF, Lacerda M, Monteiro WM. Safety and efficacy of a freeze-dried trivalent antivenom for snakebites in the Brazilian Amazon: An open randomized controlled phase IIb clinical trial. PLoS Negl Trop Dis. 2017; 11(11): e0006068.

Peterson ME, Matz M, Seibold K, Plunkett S, Johnson S, Fitzgerald K. A Randomized Multicenter Trial of Crotalidae Polyvalent Immune F(ab) Antivenom for the Treatment of Rattlesnake Envenomation in Dogs. J Vet Emerg Crit Care (San Antonio). 2011; 21(4): 335-345.

Otero-Patiño R, Segura A, Herrera M, Angulo Y, León G, Gutiérrez JM, Barona J, Estrada S, Pereañez A, Quintana JC, Vargas LJ, Gómez JP, Díaz A, Suárez AM, Fernández J, Ramírez P, Fabra P, Perea M, Fernández D, Arroyo Y, Betancur D, Pupo L, Córdoba EA, Ramírez CE, Arrieta AB, Rivero A, Mosquera DC, Conrado NL, Ortiz R. Comparative Study of the Efficacy and Safety of Two Polyvalent, Caprylic Acid Fractionated [IgG and F(ab')2] Antivenoms, in Bothrops Asper Bites in Colombia. Toxicon. 2012; 59(2): 344-355.

Williams DJ, Habib AG, Warrell DA. Clinical studies of the effectiveness and safety of antivenoms. Toxicon. 2018; 150: 1-10.

Kini RM, Sidhu SS, Laustsen AH. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins (Basel). 2018; 10(12): 534.

Laustsen AH, Engmark M, Milbo C, Johannesen J, Lomonte B, Gutiérrez JM, Lohse B. From fangs to pharmacology: the future of snakebite envenoming therapy. Curr. Pharm. Des. 2016; 22(34): 5270–5293.

Laustsen AH, María Gutiérrez J, Knudsen C, Johansen KH, Bermúdez-Méndez E, Cerni FA, Jürgensen JA, Ledsgaard L, Martos-Esteban A, Øhlenschlæger M, Pus U, Andersen MR, Lomonte B, Engmark M, Pucca MB. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 2018; 146: 151-175.

P. Gopalakrishnakone, Inagaki H, Vogel CW, Mukherjee AK, Rahmy TR. Snake Venoms. (1st ed.). Dordrecht: Springer; 2017. 453-474 p.

Parker-Cote J, Meggs WJ. First Aid and Pre-Hospital Management of Venomous Snakebites. Trop Med Infect Dis. 2018; 3(2): 45.

American College of Medical Toxicology, American Academy of Clinical Toxicology, American Association of Poison Control Centers European Association of Poison Control Centres and Clinical Toxicologists, International Society on Toxinology, Asia Pacific Association f Medical Toxicology. Pressure immobilization after North American Crotalinae snake envenomation. Clin Toxicol (Phila). 2011; 49(10): 81-882.

Kanaan NC, Ray J, Stewart M, Russell KW, Fuller M, Bush SP, Caravati EM, Cardwell MD, Norris RL, Weinstein SA. Wilderness Medical Society Practice Guidelines for the Treatment of Pitviper Envenomations in the United States and Canada. Wilderness Environ Med. 2015; 26(4): 472-487.

Bhattacharjee P, Bhattacharyya D. Medicinal plants as snake venom antidotes. J Exp Appl Anim Sci. 2014; 1(1): 156-181.

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from Plants’ extracts. Afr J Trad Compl Altern Med. 2011; 8(1): 1-10.

Knowles R. The mechanism & treatment of snake bite in India. Trans R Soc Trop Med Hyg. 1921; 15: 72-92.

Mhaskar KS, Caius JF. Indian Plant remedies in snake bite. Indian J Med Res. 1931; 19: 28.

Rizzini CT, Mors WB, Pereira NA. Brazilian plants so-believed active against animalvenons, especially anti-snake venoms. Rev Bras Farm. 1988; 69: 82-86.

Wagner H, Hikino H, Farnsworth N. Economic and Medicinal Plant Research. Vol. 5. London: Academic Press; 1991. p. 352-382.

Martz W. Plants with a reputation against snakebite. Toxicon. 1992; 30(10): 1131-42.

Duke JA. Dr. Duke's Phytochemical and Ethnobotanical Databases. USDA–ARS–NGRL. Beltsville Agricultural Research Center, Md, USA. [Online]. 1993. [cited 2021 Jun 26]. Available from: https://data.nal.usda.gov/dataset/dr-dukesphytochemical-and-thnobotanical-databases.

Hashimoto G. Brazilian plants: 2002. [Online]. 2002. [cited 2020 Jan 22]. Available from: http://www.brazilian-plants.com.

Clinical Trial Registry-India. Study to find out the results of Ayurvedic Kwath & Ashwagandha churna with Yoga exercises to prevent our health workers against corona virus infection. (CTRI/2020/05/025398). [Online]. 2020. [cited 2020 Jun 19]. Available from:

http://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=43831&EncHid=&modid=&compid=%27,%2743831det%27

Clinical Trial Registry-India. Evaluation of Efficacy and Safety of Ayurveda Intervention (Ayush-64) add-on therapy for patients with COVID-19 infection (Stage I)-A Randomized controlled clinical trial (CTRI/2020/05/025156). [Online]. 2020. [cited 2020 Jun 19]. Available from:http://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=43590&EncHid=&modid=&compid=%27,%2743590det%27.

Clinical Trial Registry-India. A Randomized, Open Label, Parallel Efficacy, Active Control, Exploratory Clinical Trial to Evaluate Efficacy and Safety of an Ayurvedic Formulation (AYUSH 64) as Adjunct Treatment to Standard of Care for the management of Mild to Moderate COVID-19 Patients (CTRI/2020/05/025214). [Online]. 2020. [cited 2020 Jun 19]. Available from: http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=43727&EncHid=&userName=025214.

Clinical Trial Registry-India. Integration of Ayurvedic proprietary formulation (SUVED) and Whole Colostrum (REIMMUGEN) intervention given together, to reduce morbidity and mortality in suspected and confirmed COVID patients admitted to COVID ward in Pune. (CTRI/2020/05/025343). [Online]. 2020. [cited 2020 Jun 19]. Available from:http://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=43919&EncHid=&modid=&compid=%27,%2743919det%27.

Clinical Trial Registry-India. Clinical trial to evaluate the safety and efficacy of ShatPlus an Ayurvedic Proprietary Medicine as an intervention in adult patients with SARS-CoV-2 infection. (CTRI/2020/05/025340). [Online]. 2020. [cited 2020 Jun 19]. Available from:

http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=44005&EncHid=&userName=CTRI/2020/05/025340

Clinical Trial Registry-India. Evaluation of Efficacy and Safety of Ayurveda Intervention (Guduchi Ghan Vati) in the management of COVID-19 infection (Asymptomatic & Mild symptoms) - An open label single arm prospective clinical trial. (CTRI/2020/05/025370). [Online]. 2020. [cited 2020 Jun 19]. Available from:http://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=44064&EncHid=&modid=&compid=%27,%2744064det%27.

Latha G, Sini S, Shikha I, Suja S, Shyamal S, Shine VJ, Mathew D, Rajasekharan S. Conference paper on flowering plants used against snake bite in traditional and tribal medicine of India. Presented in conference: Snake-Con at Little Flower Hospital & Research Centre, Angamaly, Kerala, India. [Online]. 2008. [cited 2019 Dec 20]. Available from: http://www.physicianbyte.com/SnaCon_FloweringPlants_Latha.aspx.

Linnet A, Latha PG, Gincy MM, Anuja GI, Suja SR, Shyamal S, Shine VJ, Sini S, Shikha P, Mathew D, Rajasekharan S. Anti-inflammatory, analgesic and anti-lipid peroxidative effects of Rhaphidophora pertusa (Roxb.) Schott. and Epipremnum pinnatum (Linn.) Engl. aerial parts. Indian J Nat Prod Resour. 2010; 1(1): 5-10.

Naik B NR, Vishnuvardhan Z, Rosaiah G. Traditional PhytoTherapeutic Practices among Sugalis of Krishna District, Andhra Pradesh, India. Int J Recent Sci Res. 2017; 8(9): 20392-20402.

Kunjam SR, Jadhav SK, Tiwari KL. Traditional Herbal Medicines for the Treatment of Snake Bite and Scorpion Sting by the Tribes of South Surguja, Chhattisgarh, India. Med Aromat Plants. 2013; 2: 1-3.

Jain A, Katewa SS, Sharma SK, Galav P, Jain V. Snakelore and indigenous snakebite remedies practiced by some tribals of Rajasthan. Ind J Trad Knowledge. 2011; 10: 258-268.

Debbarma M, Pala NA, Kumar M, Bussmann RW. Traditional knowledge of Medicinal Plants In Tribes of Tripura In Northeast, India. Afr J Tradit Complement Altern Med. 2017 Jun 5; 14(4): 156-168.

Kuvar S, Shinde RD. Plants used by Kokni tribe as antidote for snake bite and scorpion sting from Nasik and Dhule districts of Maharashtra. J Global Biosci. 2019; 8(3): 6043-6050.

Molander M, Saslis-Lagoudakis CH, Jager AK, Ronsted N. Cross-cultural comparison of medicinal floras used against snakebites. J Ethnopharmacol. 2012; 139(3): 863-872.

Pawar GP, Pawar PS. Study of snakebite cases and use of “Pinak” the ayurvedic antivenin. [Online]. 2006. [cited 2019 Aug 3]. Available from: http://www.shreebharadiayurpharma.com/studypinak.html.

Munedzimwe TC, van Zyl RL, Heslop DC, Edkins AL, Beukes DR. Semi-synthesis and evaluation of sargahydroquinoic acid

derivatives as potential antimalarial agents. Medicines. 2019; 6(2): 47.

Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís A, Fernández N, Barroso M, Gallardo E, Duarte AP. Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination. Medicines (Basel). 2019; 6(1): 31.

Wang JG, Xu CC, Wong YK, Li Y, Liao F, Jiang T, Tu Y. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering. 2019; 5(1): 32-39.

Newman D, Cragg G. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016; 79(3): 629-661.

González Rodríguez II, Francisco AF, Moreira-Dill LS, Quintero A, Guimarães CLS, Fernandes CAH, Takeda AAS, Zanchi FB, Caldeira CAS, Pereira PS, Fontes MRM, Zuliani JP, Soares AM. Isolation and structural characterization of bioactive compound from Aristolochia sprucei aqueous extract with anti-myotoxic activity. Toxicon X. 2020; 7: 100049.

Bhattacharjee P, Bera I, Chakraborty S, Ghoshal N, Bhattacharyya D. Aristolochic acid and its derivatives as inhibitors of snake venom L -amino acid oxidase. Toxicon. 2017; 138: 1-17.

Fernandes CA, Cardoso FF, Cavalcante WG, Soares AM, DalPai M, Gallacci M, Fontes MR. Structural Basis for the Inhibition of a Phospholipase A2-Like Toxin by Caffeic and Aristolochic Acids. PLoS ONE. 2015; 10(7): e0133370.

Singh P, Yasir M, Hazarika R, Sugunan S, Shrivastava R. A Review on Venom Enzymes Neutralizing Ability of Secondary Metabolites from Medicinal Plants. J Pharmacopuncture. 2017; 20(3): 173-178.

Salama W, Abdel-Aty A, Fahmy A. Rosemary leaves extract: Anti-snake action against Egyptian Cerastes cerastes venom. J Trad Compl Med. 2018; 8(4): 465-475.

Gomes A, Saha A, Chatterjee I, Chakravarty AK. Viper & cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomed. 2007; 14(9): 637-643.

Hasan MN, Azam NK, Ahmed MN, Hirashima A. A randomized ethnomedicinal survey of snakebite treatment in southwestern parts of Bangladesh. J Trad Compl Med. 2015; 6(4): 337-342.

Diogo LC, Fernandes RS, Marcussi S, Menaldo DL, Roberto PG, Matrangulo PV, Pereira PS, França SC, Giuliatti S, Soares AM, Lourenço MV. Inhibition of Snake Venoms and Phospholipases A2 by Extracts from Native and Genetically Modified Eclipta alba: Isolation of Active Coumestans. Basic Clin. Pharmacol. Toxicol. 2009; 104: 293-299.

Vaidya S, Singh AR, Patel VG, Khan NA, Yewale RP, Kale MK. A review on herbs against snake venom. J Pharmacogn Phytochem. 2018; 7(6S): 5-9.

Machiah DK, Girish KS, Gowda TV. A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2006; 143(2): 158-161.

Girish KS, Kemparaju K. Inhibition of Naja naja venom hyaluronidase by Plant-derived bioactive components & polysaccharides, Biochemistry (Mosc). 2005; 70(8): 948-952.

Núñez V, Castro V, Murillo R, Ponce-Soto LA, Merfort I, Lomonte B. Inhibitory effects of Piper umbellatum & Piper peltatum extracts towards myotoxic phospholipases A2 from Bothrops snake venoms: isolation of 4-nerolidylcatechol as active principle. Phytochemistry. 2005; 66(9): 1017-1025.

da Silva SL, Calgarotto AK, Chaar JS, Marangoni S. Isolation & characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity. Toxicon. 2008; 52(6): 655-666.

Kini RM, Gowda TV. Studies on snake venom Enzymes: Part I. Purification of ATPase, a toxic component of Naja naja venom & its inhibition by Potassium gymnemate. Indian J Biochem & Biophys. 1982; 19(2): 152-154.

Chatterjee I, Chakravarty AK, Gomes A. Daboia russelli & Naja kauuthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicusR. Br. J Ethnopharmacol. 2006; 106(1): 38-43.

Min HM, Aye M, Taniguchi T, Miura N, Monde K, Ohzawa K, Nikai T, Niwa M, Takaya Y. A structure and an absolute configuration of (+)-alternamin, a new coumarin from Murraya alternans having antidote activity against snake venom. Tetrahedron Lett. 2007; 48(35): 6155-6158.

Reyes-Chilpa R, Gómez-Garibay F, Quijano L, MagosGuerrero GA, Ríos T. Preliminary results on the protective effect of (-)-edunol, a pterocarpan from Brongniartia podalyrioides (Leguminosae), against Bothrops atrox venom in mice. J Ethnopharmacol. 1994; 42(3): 199-203.

Fatima N, Tapondjou LA, Lontsi D, Sondengam BL, Atta-UrRahman, Choudhary MI. Quinovic acid glycosides from Mitragyna stipulosa first examples of natural inhibitors of snake venom phosphodiesterase I. Nat Prod Lett. 2002; 16(6): 389-393.

Bennett CF, Mong S, Clarke MA, Kruse LI, Crooke ST. Differential effects of manoalide on secreted and intracellular phospholipases. Biochem. Pharmacol. 1987; 36(5): 733-740.

Selvanayagam ZE, Gnanavendhan SG, Balakrishna K, Rao RB, Sivaraman J, Subramanian K, Puri R, Puri RK. Ehretianone, a novel quinonoid xanthene from Ehretia buxifolia with antisnake venom activity. J Nat Prod. 1996; 59(7): 664-667.

da Silva JO, Fernandes RS, Ticli FK, Oliveira CZ, Mazzi MV, Franco JJ, Giuliatti S, Pereira PS, Soares AM, Sampaio SV. Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba. Toxicon. 2007; 50(2): 283-291.

Nataraju A, Raghavendra Gowda CD, Rajesh R, Vishwanath BS. Group IIA secretory PLA2 inhibition by ursolic acid: a potent anti-inflammatory molecule. Curr Top Med Chem. 2007; 7(8): 801-809.

Torres MC, das Chagas L Pinto F, Braz-Filho R, Silveira ER, Pessoa OD, Jorge RJ, Ximenes RM, Monteiro HS, Monteiro Evangelista JS, Diz-Filho EB, Toyama MH. Antiophidic Solanidane Steroidal Alkaloids from Solanum campaniforme. J Nat Prod. 2011; 74(10): 2168-2173.

Batina Mde F, Cintra AC, Veronese EL, Lavrador MA, Giglio JR, Pereira PS, Dias DA, França SC, Sampaio SV. Inhibition of the Lethal and Myotoxic Activities of Crotalus durissus terrificus Venom by Tabernaemontana catharinensis: identification of one of the active components. Planta Med. 2000; 66(5): 424-428.

Nanjaraj Urs AN, Manjunath Y, Joshi V, Angaswamy N, Gowda TV, Vishwanath BS. Implications of phytochemicals in snakebite management: present status and future prospective. Toxin Rev. 2013; 33(3): 1-24.

Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules. 2019; 24(18): 3276.

Kiran kumari SP, Sridevi V, Chandana Lakshmi MVV. Studies on effect of salt stress on some medicinal plants. Int J Comput Eng Res. 2012; 2(1): 143-149.

Downloads

Published

2021-07-01

How to Cite

Shewale, S., Undale, V., Chitlange, S., & Sharma, H. (2021). Ophidian Bite: The Balance between Perception, Idealism and Realism: doi.org/10.26538/tjnpr/v5i7.1. Tropical Journal of Natural Product Research (TJNPR), 5(7), 1166–1178. Retrieved from https://www.tjnpr.org/index.php/home/article/view/505