MALDI-TOF MS Based Identification and Characterization of Staphylococci Isolates from Human and Animal Sources

doi.org/10.26538/tjnpr/v5i8.30

Authors

  • Chijioke A. Nsofor Department of Biotechnology, Federal University of Technology Owerri, Imo State Nigeria
  • Chibuzor M. Nsofor Department of Medical Laboratory Science, Madonna University Teaching Hospital Elele, Rivers State Nigeria
  • Nnamdi C.D. Ukwandu Department of Biotechnology, Federal University of Technology Owerri, Imo State Nigeria
  • Achim J. Kaasch Institute of Medical Microbiology and Hospital Hygiene, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

Keywords:

MALDI-TOF MS, Staphylococci, Antibiotic Resistance, spa typing, Molecular characterization

Abstract

Identification of microorganisms usually depends on phenotypic typing and culture which may not give proper identification. The aim of this study is to use matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique to accurately identify Staphylococci isolates from human and animal specimens; preliminarily identified by conventional microbiological techniques. Among the 112 preliminarily identified staphylococci isolates, MALDI-TOF MS showed that 23(20.5%) were Staphylococcus aureus while 89 (79.5%) were coagulase-negative staphylococci (CoNS). The identified CoNS were Staphylococcus sciuri, 56 (50.0%), Staphylococcus haemolyticus 7 (6.3%), Staphylococcus cohnii 5 (4.5%), Staphylococcus arlettae 1 (0.9%), Staphylococcus simulans 12 (10.7%), Staphylococcus gallinarum 6 (5.4%), Staphylococcus lentus 1 (0.9%) and Staphylococcus piscifermentans 1 (0.9%). S. haemolyticus, S. cohnii and S. arlettae were identified only from human specimens while S. lentus and S. piscifermentans were identified only from poultry specimens. All the identified staphylococci were susceptible to fosfomycin and imipenem, however, a very high rate of resistance was seen in oxacillin and benzyipenicillin; 82.6% and 95.7% for S. aureus; 61.8% and 78.7% for CoNS respectively. A total of 15(65.2%) of the identified S. aureus were positive for mecA gene while the 4(17.4%) that were PVL-positive did not harbour the mecA gene. The spa typing revealed that the stains were genetically diverse with the detection of nine different spa types from the 23 S. aureus strains. The findings from this study have shown that MALDI-TOF MS is a powerfully useful tool for accurate identification of Staphylococci to the species level. 

References

Jesumirhewe C, Ogunlowo PO, Olley M, Springer B, Allerberger F, Ruppitsch W. Accuracy of conventional identification methods used for Enterobacteriaceae isolates in three Nigerian hospitals. Peer J. 2016; 4:e2511

Velasco V, Buyukcangaz E, Sherwood JS, Stepan RM, Koslofsky RJ, Logue CM. Characterization of Staphylococcus aureus from Humans and a Comparison with İsolates of Animal Origin, in North Dakota, United States. PLoS ONE. 2015; 10(10): e0140497.

Shittu AO, Okon K, Adesida S, Omotayo O, Witte W, Strommenger B, Layer F, Nübe U. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol. 2011; 11(92):92-99.

Paradisi F, Corti G, Messeri D. Antistaphylococcal (MSSA, MRSA, MSSE, MRSE) antibiotics. Med Clin North Am. 2001; 85(1):1-173.

Carpaij N, Willems JL, Bonten JM, Fluit AC. Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis. 2011; 30(10):1169-1172.

Huebner J and Goldmann DA. Coagulase-negative staphylococci: role as pathogens. Annu Rev Med. 1999; 50: 223-2365.

Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the

Centers for Disease Control and Prevention, 2006–2007. Infect Contr Hosp Epidemiol. 2008; 29(11):996-10114.

Chen XF, Hou X, Xiao M, Zhang L, Cheng JW, Zhang JJ, Xu YC, Hsueh PR. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorg. 2021; 9:

Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS. Detection of SARS-CoV-2 in nasal swabs using MALDIMS. Nat Biotechnol. 2020; 38(10):1168-1173.

Cuenod A, Foucault F, Pfluger V, Egli A. Factors Associated with MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. Front Cell Infect Microbiol. 2021; 11:646648.

Ilki AA, Ozsoy S, Gelmez G, Aksu B, Soyletir G. An alternative for urine cultures: Direct identification of uropathogens from urine by MALDI-TOF MS. Acta Microbiol Immunol Hung. 2020; 67(3):193-197.

Torres I, Gimenez E, Vinuesa V, Pascual T, Moya JM, Alberola J, Martinez-Sapina A, Navarro D. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) proteomic profiling of cerebrospinal fluid in the diagnosis of enteroviral meningitis: A proof-ofprinciple study. Eur J Clin Microbiol Infect Dis. 2018; 37(12):2331-2339.

Iroha IR, Ayogu TA, Oji AE, Afiukwa FN, Nwuzo AC. Comparison of matrix assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-TOF MS) with conventional culture and biochemical method of bacteria identification to species level. J Med Diagn. 2011; 2 (1):1-4.

Ayeni FA, Gbarabon T, Andersen C, Nørskov-Lauritsen N. Comparison of identification and antimicrobial resistance pattern of Staphylococcus aureus isolated from Amassoma, Bayelsa state, Nigeria. Afr Health Sci. 2015; 15(4):1282-1288.

The European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters, Version 8.1, 2018. Available online https://www.eucast.org/clinical_breakpoints/

da Silva Amaral L, Rodrigues-Filho E, Kubicek CP, Herwig C, Marchetti-Deschmann M, Allmaier G. Optimization of

sample preparation for intact cell mass spectrometry (matrix assisted laser desorption/ionization linear time-of-flight mass spectrometry) of endophytic Xylaria. Rap Commun Mass Spectr. 2018; 32:815-823.

Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, Turnwald D. Typing of methicillin-resistant Staphylococcus aureus in a university setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003; 41(12):5442-5448.

Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nübel B, Witte W. spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol. 2008; 46(2):574-581.

Panda A, Sravya K, Jyotish CS, Alagiri S, Shehla K. MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates. Ind J Med Res. 2014; 140(6):770-777.

van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol.2010; 48(3):900-907.

Yonezawa T, Watari T, Ashizawa K, Hanada D, Yanagiya T, Watanabe N, Terada T, Tomoda Y, Fujii S. Development of an improved rapid BACpro(R) protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Meth. 2018; 148:138-144.

Cheesbrough M. District Laboratory Practice in Tropical Countries, Part 2. Cambridge University Press. Cambridge, UK; 2000. 434 p.

Bizzini A, Jaton K, Romo D, Bille J, Prod’hom G, Greub G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol. 2011; 49(2):693-696

Bishop B, Geffen Y, Plaut A, Kassis O, Bitterman R, Paul M, Neuberger A. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid bacterial identification in patients with smear-positive bacterial meningitis. Clin Microbiol Infect. 2018; 24(2): 171-174.

Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 2010; 48(4):11691175.

Gaillot O, Blondiaux N, Loïez C, Wallet N, Herwegh C,Courcol C. Cost-effectiveness of switch to matrix-assisted laser desorption ionization time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol. 2011; 49(12):4412.

Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrixassisted laser desorption onization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol. 2011; 49(4): 1614-1616.

El-Bouri K, Johnston S, Rees E, Thomas I, BomeMannathoko N, Jones C, Reid M, Ben-Ismaeil B, Davies AP, Harries L, Mack D. Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods: agreement, speed and cost implications. Br J Biomed Sci. 2012; 69(2):47-55.

Schmidt T, Kock MM, Ehlers MM. Antimicrobial Resistance in Staphylococci at the Human– Animal Interface, Antimicrobial Resistance - An Open Challenge, Maria Cristina Ossiprandi, Intech Open. 2015. Available online https://www.intechopen.com/chapters/49455

Fitzgerald JR. Human origin for livestock-associated methicillin-resistant Staphylococcus aureus. mBio. 2012; 3(2):e00082-12.

Aarestrup FM and Schwarz S. Antimicrobial resistance in Staphylococci and Streptococci of animal origin. In: Aarestrup FM, editor. Antimicrobial Resistance in Bacteria of Animal Origin Washington: ASM Press; 2006; 187-212 p.

Downloads

Published

2021-08-01

How to Cite

Nsofor, C. A., Nsofor, C. M., Ukwandu, N. C., & Kaasch, A. J. (2021). MALDI-TOF MS Based Identification and Characterization of Staphylococci Isolates from Human and Animal Sources: doi.org/10.26538/tjnpr/v5i8.30. Tropical Journal of Natural Product Research (TJNPR), 5(8), 1515–1520. Retrieved from https://www.tjnpr.org/index.php/home/article/view/499