Active Compounds from Polyscias scutellaria Stimulate Breast Milk Production: In Silico Study on Serotonergic 5-HT2A Receptors and Prolactin Receptors

doi.org/10.26538/tjnpr/v5i7.10

Authors

  • Sumirah B. Pertami Department of Nursing, Politeknik Kesehatan Kemenkes Malang, Jalan Besar Ijen no. 77C 65119, Malang, East Java, Indonesia
  • Siti N. Arifah Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jalan Semarang no. 5 65145, Malang, East Java, Indonesia
  • Mochammad F. Atho’illah Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran 65145, Malang, East Java, Indonesia
  • Budiono Budiono Department of Nursing, Politeknik Kesehatan Kemenkes Malang, Jalan Besar Ijen no. 77C 65119, Malang, East Java, Indonesia

Keywords:

P. scutellaria, 5-hydroxytryptamine-2A receptors, Prolactin receptors, In silico

Abstract

Mother’s milk plays a significant role in infant nutrition. It is well known that exclusive breastfeeding can reduce the risk of various pathogens infection in infants. Colostrum in mother’s milk contains various bioactive factors, especially immunoglobulin A (IgA). However, hormones such as serotonin and prolactin can affect the secretion of a mother’s milk. Serotonin is a neurotransmitter that plays a role in stimulating prolactin secretion by the pituitary gland. Shield Aralia (Polyscias scutellaria), daunmangkokan in Java, has various active compounds, including afzelin, kaempferol, quercetin, quercitrin, and rutin. This study aimed to analyze the potential of the active compounds of P. scutellaria leaves in enhancing breast milk production through in silico analyses of two main proteins, serotonin 5-hydroxytryptamine-2A receptors (5-HT2AR) and prolactin receptors (PRLR). Results of molecular docking studies revealed that active compounds present in P. scutellaria docked at the same site as Risperidone, a known drug that influences serotonin reuptake and used in this study as the positive control agent. These results showed that the active compounds in the P. scutellaria leaves could be used as an alternative medicine to increase breast milk production. 

References

Aly E, Darwish AA, Lopez-Nicolas R, Frontela-Saseta C, RosBerruezo G. Bioactive Components of Human Milk: Similarities and Differences between Human Milk and Infant Formula [Online]. Selected Topics in Breastfeeding. IntechOpen; 2018 [cited 2021 Jun 6]. Available from: https://www.intechopen.com/books/selected-topics-inbreastfeeding/bioactive-components-of-human-ilk-similarities-and-differences-between-human-milk-and-infantformul.

World Health Organization. Infant and Young Child Feeding: Session 2 “The physiological basis of breastfeeding” [Internet]. Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals. Geneva: World Health Organization; 2009 [cited 2020 Aug 13].Available from: https://www.ncbi.nlm.nih.gov/books/NBK148970/

Lawrence RA and Lawrence RM. Breastfeeding: a guide for the medical profession. Eighth edition. Philadelphia, PA: Elsevier; 2016. 975 p.

El-Agamy EI. Nutrition and Health | Milk Allergy. In: Fuquay JW, editor. Encyclopedia of Dairy Sciences (Second Edition). San Diego: Academic Press; 2011. 1041-1045 p.

Haschke F, Haiden N, Thakkar SK. Nutritive and Bioactive Proteins in Breastmilk. Ann Nutr Metab. 2016; 69(Suppl. 2):16-26.

Nojiri K, Kobayashi S, Higurashi S, Takahashi T, Tsujimori Y, Ueno HM, Watanabe-Matsuhashi S, Toba Y, Yamamura J,Nakano T, Nomura K, Kobayashi T. Maternal Health and Nutrition Status, Human Milk Composition, and Growth and Development of Infants and Children: A Prospective Japanese Human Milk Study Protocol. Int J Environ Res Pub Health. 2020; 17(6):1869-1898.

Lee S and Kelleher SL. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am J Physiol-Endocrinol Metab. 2016; 311(2):E405-E422.

Islam MJ, Broidy L, Baird K, Rahman M, Zobair KM. Early exclusive breastfeeding cessation and postpartum depression: Assessing the mediating and moderating role of maternal stress and social support. PLOS ONE. 2021; 16(5):e0251419.

Klinger G, Stahl B, Fusar-Poli P, Merlob P. Antipsychotic drugs and breastfeeding. Pediatr Endocrinol Rev PER. 2013; 10(3):308-313.

Liu H, Hua Y, Luo H, Shen Z, Tao X, Zhu X. An Herbal Galactagogue Mixture Increases Milk Production and Aquaporin Protein Expression in the Mammary Glands of Lactating Rats. Evi Complemnt and Altrn Med. 2015; 2015:1-6.

Parikh T, Goyal D, Scarff JR, Lippmann S. Antipsychotic Drugs and Safety Concerns for Breast-Feeding Infants. South Med J. 2014; 107(11):686-688.

Nweze C, Lay T, Muhammad A, Ubhenin A. Hypoglycemic, Hepatoprotective and Hypolipidemic Effects of Pleurotus ostreatus in Alloxan-Induced Hyperglycemic Rats. Trop J Nat Prod Res. 2017; 1(4):163-167.

Juliastuti J. Efektivitas Daun Katuk (Sauropus androgynus) rerhadap Kecukupan ASI pada Ibu Menyusui di Puskesmas Kuta Baro Aceh Besar. Indones J Health Sci. 2019; 3(1):1-5.

Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: In silico Methods for Drug Design and Discovery. Front Chem. 2020; 8.

Dallakyan S and Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol Clifton NJ. 2015; 1263:243-250.

Ramayulis R. 100 Resep dan 20 Khasiat (100 recipes and 20 properties). Jakarta, Indonesia: PT. Gramedia Pustaka Utama; 2015.

Trott O and Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient

optimization and multithreading. J Comput Chem. 2010; 31(2):455-461.

Dassault Systèmes BIOVIA. Discovery studio modeling environment. (Version 4.5). San Diego: Dassault Systèmes; 2015.

Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Deonnel L, Oseter S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017; 45(Database issue):D369-D379.

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Pork P, Jensen LJ, Mering C. STRING v10: proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(Database issue): D447-D452.

Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008; 36(Database issue):D684-D6838.

Kanehisa M and Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27-30.

Atho’illah MF, Safitri YD, Nur’aini FD, Widyarti S, Tsuboi H, Rifa’i M. Elicited soybean extract attenuates proinflammatory cytokines expression by modulating TLR3/TLR4 activation in high−fat, high−fructose diet mice. J Ayurveda Integr Med. 2021; 12(1):43-51.

Shityakov S and Foerster C. In silico predictive model to determine vector-mediated transport properties for the bloodbrain barrier choline transporter. Adv Appl Bioinforma Chem. 2014; 2014(7):23-26.

Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules. 2018; 23(8):2087-2115.

Tewksbury A and Olander A. Management of antipsychoticinduced hyperprolactinemia. Ment Health Clin. 2016; 6(4):185-190.

Brodribb W. ABM Clinical Protocol #9: Use of Galactogogues in Initiating or Augmenting Maternal Milk Production, Second Revision 2018. Breastfeed Med. 2018; 13(5):307-314.

Geng X, Wang Y, Wang H, Hu B, Huang J, Wu Y, Wang J, Zhang F. In silico strategy for isoform-selective 5-HT 2A R and 5-HT 2C R inhibitors. Mol Syst Des Eng. 2021; 6(2):139-155.

Lin F, Li F, Wang C, Wang J, Yang Y, Yang L, Li Y. Mechanism Exploration of Arylpiperazine Derivatives Targeting the 5-HT2A Receptor by In Silico Methods. Molecules. 2017; 22(7):1064-1085.

Braden MR, Parrish JC, Naylor JC, Nichols DE. Molecular Interaction of Serotonin 5-HT 2A Receptor Residues Phe339 (6.51) and Phe340 (6.52) with Superpotent N -Benzyl Phenethylamine Agonists. Mol Pharmacol. 2006; 70(6):1956-1964.

Pezet A, Ferrag F, Kelly PA, Edery M. Tyrosine Docking Sites of the Rat Prolactin Receptor Required for Association and Activation of Stat5. J Biol Chem. 1997; 272(40):25043-25050.

Schmitt-Ney M, Doppler W, Ball RK, Groner B. Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-glandspecific nuclear factor. Mol Cell Biol. 1991; 11(7):3745-3755.

Mallmann ES, Paixão L, Ribeiro MF, Spritzer PM. Serotonergic 5-HT2A/2C receptors are involved in prolactin secretion in hyperestrogenic rats. Neurosci Lett. 2014; 582:71-74.

Caffarel MM, Zaragoza R, Pensa S, Li J, Green AR, Watson CJ. Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis. Cell Death Differ. 2012; 19(3):511-522.

Lyons DJ, Ammari R, Hellysaz A, Broberger C. SerotoninIndependent Actions of SSRIs in the Hypothalamus. J Neurosci. 2016; 36(28):7392-7406.

Budiono B, Pertami SB, Arifah SN, Lestari SR. Molecular docking analysis of Polyscias scutellaria active compounds as inhibitor of dopamine D2 receptors to increase prolactin secretion. In Malang, Indonesia; 2021 [cited 2021 Jun 5]. p. 030034. Available from: http://aip.scitation.org/doi/abs/10.1063/5.0052655

Liang SL and Pan JT. An endogenous serotonergic rhythm acting on 5-HT(2A) receptors may be involved in the diurnal changes in tuberoinfundibular dopaminergic neuronal activity and prolactin secretion in female rats. Neuroendocrinology. 2000; 72(1):11-19.

Tsopmo A. Phytochemicals in Human Milk and Their Potential Antioxidative Protection. Antioxidants. 2018; 7(2):32-41.

Romaszko E, Wiczkowski W, Romaszko J, Honke J, Piskula MK. Exposure of breastfed infants to quercetin after consumption of a single meal rich in quercetin by their mothers. Mol Nutr Food Res. 2014; 58(2):221-228.

Khymenets O, Rabassa M, Rodríguez-Palmero M, RiveroUrgell M, Urpi-Sarda M, Tulipani S, Brandi, P, Campoy C, Santos-Buelga, C, Andres-Lacueva,C. Dietary Epicatechin Is Available to Breastfed Infants through Human Breast Milk in the Form of Host and Microbial Metabolites. J Agric Food Chem. 2016; 64(26):5354-5360.

Song BJ, Jouni ZE, Ferruzzi MG. Assessment of phytochemical content in human milk during different stages of lactation. Nutrition. 2013; 29(1):195-202.

Liu W, Zhou Y, Qin Y, Yu L, Li R, Chen Y, Xu Y. Quercetin Intervention Alleviates Offspring’s Oxidative Stress, Inflammation, and Tight Junction Damage in the Colon Induced by Maternal Fine Particulate Matter (PM2.5) Exposure through the Reduction of Bacteroides. Nutrients. 2020; 12(10):3095-3106.

Zuppa AA, Sindico P, Orchi C, Carducci C, Cardiello V, Catenazzi P. Safety and Efficacy of Galactogogues: Substances that Induce, Maintain and Increase Breast Milk Production. J Pharm Pharm Sci. 2010; 13(2):162-174.

Downloads

Published

2021-07-01

How to Cite

Pertami, S. B., Arifah, S. N., Atho’illah, M. F., & Budiono, B. (2021). Active Compounds from Polyscias scutellaria Stimulate Breast Milk Production: In Silico Study on Serotonergic 5-HT2A Receptors and Prolactin Receptors: doi.org/10.26538/tjnpr/v5i7.10. Tropical Journal of Natural Product Research (TJNPR), 5(7), 1223–1229. Retrieved from https://www.tjnpr.org/index.php/home/article/view/481