Differentially Expressed Genes, and Molecular Docking and Dynamic Analysis Revealing the Potential of Compounds in <i>Zingiber officinale</i> Roscoe as Inhibitors of TP53- regulating Kinase (TP53RK) that Influence the p53 Signaling Pathway Related to Apoptosis a
Main Article Content
Abstract
Overexpression of CDKN1A—a downstream p53 gene—can trigger apoptosis in old cells but can also lead to chemoresistance and serve as a poor prognosis marker in cancer. This study explores apoptosis mechanisms via the p53 signaling pathway, focusing on the expression of CDKN1A (p21). Differential expression gene (DEG) analysis was performed on downstream p53 signaling genes using GSE23773 data from the Gene Expression Omnibus database, which includes whole human genome microarray data of colorectal cancer cells (HT-29) over time. Molecular docking simulations of compounds in ginger (Zingiber officinale Roscoe) ginger (Zingiber officinale Roscoe) against against TP53- related kinase (TP53RK), a protein that activates p53, were conducted to assess the potential of these compounds to influence downstream genes in the p53 signaling pathway. The DEGs were validated using machine learning and principal component analysis methods. Molecular docking and dynamic simulations of ginger compounds against TP53RK were performed on the crystal structure of the D-chain protein with PDB code 6WQX [D]. The docking scores of these compounds were then compared with pomalidomide, a known inhibitor of TP53RK. DEG analysis of GSE23773 data revealed that BAX, STEAP3 (TSAP6), AIFM2, SIVA1, GTSE1 (B99), and CDKN1A (p21) are downstream p53 genes whose expression undergoes regulatory changes in old HT-29 cells (day 7 cultures). Molecular docking and molecular dynamic simulation analysis indicated that gingerenone A, 6-shogaol, gingerol, and 6-paradol in Z. officinale Roscoe have the potential to down-regulate CDKN1A (p21) by inhibiting p53 activation through TP53RK and stable during 10ns.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Global Cancer Observatory. Cancer Today 2020. Lyon, France; 2023.
Yantiss RK. Persistent Problems in Colorectal Cancer Reporting. Surg Pathol Clin. 2017; 10(4): 961–976.
Wahid RA, Purwaningsih O, Pamungkas, PB. Phytochemical Profiling and Antioxidant Activities of Red Ginger (Zingiber officinale var. rubrum) Cultivated Eco-Farming. Trop J Nat Prod Res. 2023; 7(9):3968-3973.
Siregar RS, Adiguna RA, Kamil I, Nazir N, Nofialdi N. Ginger (Zingiber officinale R.) as a Potent Medicinal Plant for the Prevention and Treatment of Diabetes Mellitus: A Review. Trop J Nat Prod Res. 2022; 6(4):462-469.
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 2019; 8( (6):185-205
Hu W, Yu A, Wang S, Bai Q, Tang H, Yang B, Wang M, Kuang H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules. 2023; 28(9):3855.
Naureen I, Saleem A, Zahid O, Din GU, Sadiq A, Tul-Kubra K, Rauf A, Naqeeb T. Therapeutic Role of Ginger. Haya: Saudi J Life Sci. 2022; 7(1):1–8.
Zadorozhna M, Mangieri D. Mechanisms of Chemopreventive and Therapeutic Proprieties of Ginger Extracts in Cancer. Int J Mol Sci. 2021; 22(12):6599.
Pashaei-Asl R, Pashaei-Asl F, Mostafa Gharabaghi P, Khodadadi K, Ebrahimi M, Ebrahimie E, Pashaei-Asl M. The Inhibitory Effect of Ginger Extract on Ovarian Cancer Cell Line; Application of Systems Biology. Adv Pharm Bull. 2017; 7(2):241–249.
Abdullah S, Abidin SAZ, Morad NA, Makpol S, Zurinah WN, Yusof YAM. Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr J Biochem Res. 2010; 4:134–142.
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. In: Mechanisms of Cell Death and Opportunities for Therapeutic Development. Elsevier; 2022. p. 65–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128142080000026
Cerella C, Grandjenette C, Dicato M, Diederich M. Roles of Apoptosis and Cellular Senescence in Cancer and Aging. Curr Drug Targets. 2016; 17(4):405–415
Sazonova E V., Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov. 2021; 7(1):155.
D. Bazhanova E, L. Teply D. The Apoptosis Regulation Mechanisms in Hypothalamic Neurons in Physiological and Pathological (Overexpression of Oncogene HER-2/Neu) Aging. In: Hypothalamus in Health and Diseases. IntechOpen; 2018. Available from: https://www.intechopen.com/books/hypothalamus-in-health-and-diseases/the-apoptosis-regulation-mechanisms-in-hypothalamic-neurons-in-physiological-and-pathological-overex
Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013; 32(43):5129–43.
Li J, Ma X, Banerjee S, Chen H, Ma W, Bode AM, Dong Z. Crystal structure of the human PRPK–TPRKB complex. Commun Biol. 2021; 4(1):167
Miyoshi A, Kito K, Aramoto T, Abe Y, Kobayashi N, Ueda N. Identification of CGI-121, a novel PRPK (p53-related protein kinase)-binding protein. Biochem Biophys Res Commun. 2003; 303(2):399–405
Shtutman M, Chang BD, Schools GP, Broude EV. Cellular Model of p21-Induced Senescence. In 2017. p. 31–9. Available from: http://link.springer.com/10.1007/978-1-4939-6670-7_3
Wang J, Walsh K. Resistance to Apoptosis Conferred by Cdk Inhibitors During Myocyte Differentiation. Science (1979). 1996; 273(5273):359–361
Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G, Gishizky ML, Draetta GF, Di Fiore PP. Frequent Alterations in the Expression of Serine/Threonine Kinases in Human Cancers. Cancer Res. 2006; 66(16):8147–8154
Hideshima T, Cottini F, Nozawa Y, Seo HS, Ohguchi H, Samur MK, Cirstea D, Mimura N, Iwasawa Y, Richardson PG, Munshi NC, Chauhan D, Massefski W, Utsugi T, Dhe-Paganon S, Anderson KC. p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017; 129(10):1308–1319.
Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S.. KNApSAcK Family Databases: Integrated Metabolite–Plant Species Databases for Multifaceted Plant Research. Plant Cell Physiol. 2012; 53(2):e1–e1.
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013; 41(Database issue):D991-D995.
Demšar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Možina M, Polajnar M, Toplak M, Starič A, Štajdohar A, Umek L, Žagar L, Žbontar J, Žitnik M, Zupan B, et al. Orange: Data Mining Toolbox in Python. J Mach Learn Res. 2013; 14:2349–2353.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023; 51(D1):D587–D592.
Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J Chem Inf Model. 2015; 55(2):460–473
Bitencourt-Ferreira G, de Azevedo WF. Molegro Virtual Docker for Docking. In 2019. p. 149–167. Available from: http://link.springer.com/10.1007/978-1-4939-9752-7_10
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023; 51(D1):D1373–D1380.
Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P, Muller G, Stirling DI, Anderson KC. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000; 96(9):2943–50.
Molegro ApS. Molegro Virtual Docker User Manual. Høegh-Guldbergs Gade 10, Building 1090 DK-8000 Aarhus C Denmark; 2011. p. 1–270
Wu X, Wang H, Lian Y, Chen L, Gu L, Wang J, Huang Y, Deng M, Gao Z, Huang Y. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis. Sci Rep. 2017; 7(1):5129.
Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS. The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics. 2019; 111(4):762–771.
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O'Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019; 575(7784):693–698.
Ray RM, Bhattacharya S, Johnson LR. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis. 2011; 16(1):35–44.
Su L, Suyila Q, Yang L, Li H, Xi Y, Su X. Bax is involved in the anticancer activity of Velcade in colorectal cancer. Exp Ther Med. 2017; 14(4):3179–3183.
Ogino S, Nosho K, Shima K, Baba Y, Irahara N, Kirkner GJ, Hazra A, De Vivo I, Giovannucci EL, Meyerhardt JA, Fuchs CS. p21 expression in colon cancer and modifying effects of patient age and body mass index on prognosis. Cancer Epidemiol Biomarkers Prev. 2009; 18(9):2513–2521
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4):337–341
Ingenmey J, Blasius J, Marchelli G, Riegel A, Kirchner B. A Cluster Approach for Activity Coefficients: General Theory and Implementation. J Chem Eng Data. 2019; 64(1):255–261.